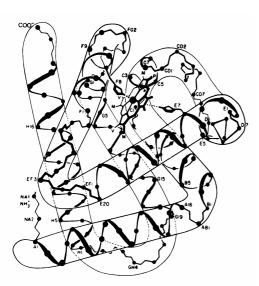
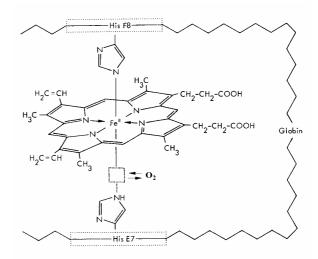
Haemoglobin

Globin – conformation of the molecule, types of chains, interactions between the chains. Haem – structure, binding of oxygen, arrangement in oxygenated and deoxygenated state, binding to globin chain. Haemoglobin (Hb) – binding 2,3-BPG, Bohr effect, allosteric interactions, saturation curve, physiological and abnormal types of haemoglobin. Glycation of proteins.

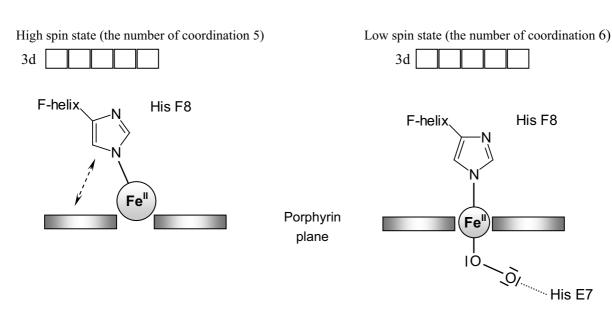

Haemoglobin


$M_{\rm r}({\rm tetramer}) = 64\ 000$			Average values of pO_2 :		
Concentration in blood: 2.15-2.65 mmol/L (tetramer)			Alveoli of the lung:	13–15 kPa	
Binding of oxygen: at totals saturation 4 mol O ₂ /mol Hb			Arterial blood:	9–13 kPa	
Saturation of Hb with oxygen:	arterial blood	~ 0.97	Mixed venous blood:	> 5 kPa	
	venous blood	~ 0.73	(Critical value for hypoxia 3.5 kPa)		

- 1. Give the mass and molar concentration of Hb related to the Hb monomer.
- 2. Calculate the maximal volume of oxygen that can bind to 1 g of Hb. (1.4 mL)
- 3. When isolated haem reacts with oxygen, the oxidation of Fe^{2+} to Fe^{3+} occurs. Describe the reaction of oxygen with haemoglobin. Explain the difference.

Secondary and Tertiary Structure of Globin Chain

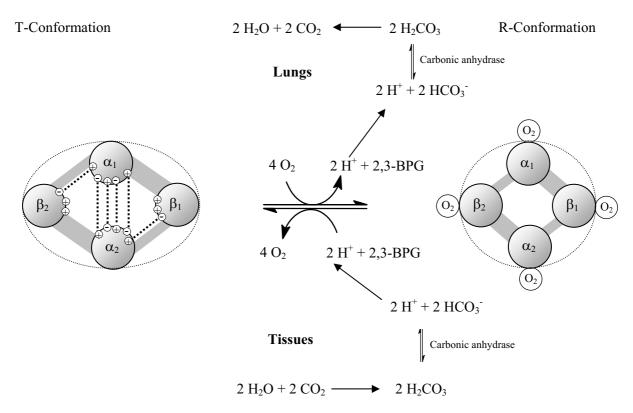
Structure of Haem



- 4. Characterize the secondary and tertiary structure of globin chain.
- 5. Characterize the structure of haem and its bindings to the globin chain.

Binding of Oxygen to Haem

Electronic configuration of Fe^{2+} (complete)

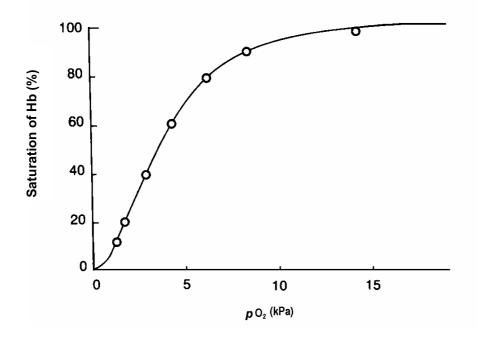

 $_{26}\mathrm{Fe}^{2+} 1\mathrm{s}^2$

6. What change in haem structure is triggered by binding of oxygen?

7. What change in deoxyHb subunit conformation results from it?

Quaternary Structure of Haemoglobin

- 8. Describe the main types of non-covalent interactions between haemoglobin subunits in oxygenated and deoxygenated state.
- 9. Give the formula of 2,3-bisfosfoglycerate and mark its binding in the T-form of Hb.
- 10. What is the principle of the Bohr effect?
- 11. Explain, why is the affinity of Hb to oxygen decreased in the presence of 2,3-BPG.


Dissociation of Haemoglobin

HHb		$Hb^- + H^+$	$pK_A \sim 7.8$
HHbO ₂		$HbO_2^- + H^+$	$pK_A \sim 6.2$

- 12. Which of the two forms of haemoglobin (Hb or HbO₂) is stronger acid?
- 13. Which of the amino acids is responsible for acid base properties of haem at physiological pH?

Saturation of Haemoglobin by Oxygen

Saturation curve of haemoglobin

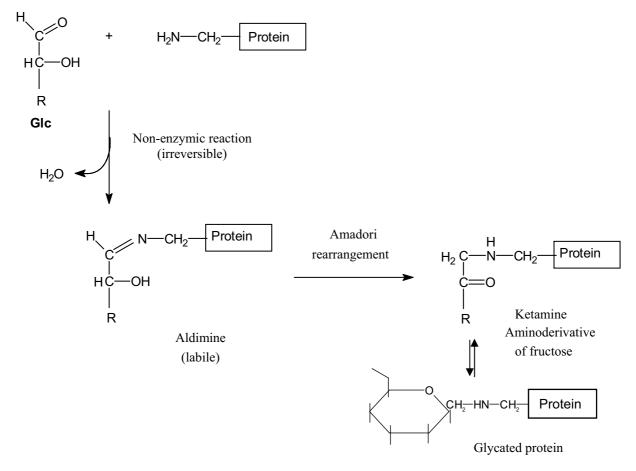
- 14. Mark areas corresponding to the pO_2 in alveoli of lungs and mixed venous blood in the graph. What is the saturation of Hb in % at these pressures?
- 15. Complete the saturation curve for myoglobin into the graph. Explain the differences in character of the both curves. Which of the both proteins binds oxygen more tightly?
- 16. The binding of oxygen to haemoglobin has cooperative character. Explain it.
- 17. On the saturation curve for Hb mark changes resulting from:

a) lowering of the pH c) decrease of 2,3-BPG concentration

b) decrease of pCO_2 d) increase of temperature

Types of Human Haemoglobin

Туре	Structu	Proportion of the total Hb in adults
HbA _o	$\alpha_2 \beta_2$	(partly HbA-Glc)
HbA		$\sim 97~\%$
HbA ₁	$\alpha_2\beta_2$	(glycation on terminal $-NH_2$ group of β -globin)
HbA ₂	$\alpha_2\delta_2$	~ 2.5 %
HbF	$\alpha_2\gamma_2$	$\sim 0.5~\%$


18. Compare the affinities of Hb and HbF to oxygen. What is the cause of this difference? What is its significance?

Derivatives of Haemoglobin

- 19. Name the derivatives of haemoglobin formed after: a) binding of O₂; CO₂ and CO; b) oxidation.
- 20. What are the most common causes of CO poisoning? How can be this poisoning detected? What is the first aid in this case?
- 21. Explain what methaemoglobinemia is and what may cause this disturbance.

Glycation of Haemoglobin

Principle of non-enzymatic glycation

22. Which factors will affect the amount of glycated haemoglobin?

Glycated Haemoglobin

HbA₁ glycation on terminal -NH₂ (Val) group of β-chains
4-6 % of the total HbA
HbA-Glc glycation in other sites of Hb: e.g. terminal -NH₂ group of α-globin or

at ϵ -NH₂ (Lys) of α , β -globin

Inherited Abnormalities of Haemoglobin Synthesis

23. What is the molecular principle of sickle cell anaemia?

24. What is the cause of sickle shape of erythrocytes?