Spirometrie

Provedení v systému PowerLab:

Spust'te program SPIROMETRIE dvojklikem na stejnojmennou ikonu na ploše.

Spirometrický snímač nechte položený na stole, v 1. kanálu *Flow* (průtok) v rozbalovacím seznamu zvolte *Spirometry Pod* a stiskněte tlačítko *Zero* (nulování), potvrďte stiskem *Ok*.

Vyšetřovaná osoba sedí na židli tak, aby nemohla sledovat záznam na monitoru a vloží si spirometrický snímač s nasazeným filtrem a sterilním náustkem do úst (snímač drží v horizontální rovině, bílé hadičky by měly směřovat vzhůru). Na nos nasaď te svorku.

Klikněte na tlačítko *Start.* 1. kanál zobrazuje rychlost proudění vzduchu snímačem, tedy <u>průtok</u> v ml/s, 2. kanál integrál průtoku, tedy <u>objem</u> v litrech. Pokud se výdech zobrazuje směrem nahoru a nádech dolů, v 1. kanálu *Flow* (průtok) v rozbalovacím seznamu zvolte *Spirometry Pod* a zatrhněte položku *Invert* (převrátit), potvrďte *Ok*.

Zaznamenejte následující situace: Klidové dýchání v délce cca 1 min a 20 s; 4 klidové dechové cykly, 1 maximální nádech, 4 klidové dechové cykly a poté maximální výdech; 4 klidové dechové cykly, poté maximální nádech následovaný maximálním výdechem (vydechnout vše a s maximální rychlostí!) a 4 klidovými dechovými cykly; hyperventilace po dobu cca 30 s; apnoická pauza v inspiriu; apnoická pauza v expiriu.

Uložte záznam do složky Dokumenty pod názvem "spirometrieXY", kde XY odpovídá iniciálám vyšetřované osoby, typ souboru Data Chart File (*.adicht).

Ve 2. kanálu *Volume* (objem) změřte a vypočítejte parametry v níže uvedené tabulce. Měřené hodnoty se zobrazují v miniokně *Volume* (objem), časový rozdíl v miniokně *Rate/Time*.

Dechový parametr	Zkratka	Výsledky měření	Jednotka				
• Klidové dýchání							
Frekvence	f		(počet dechů/min)				
Dechový objem	VT		litr (l)				
Minutová Ventilace	$\dot{\mathbf{V}}_{\mathrm{E}} = \mathbf{V}_{\mathrm{T}} \times f$		l/min				
• IRV, ERV, VC							
Inspirační rezervní objem	IRV		1				
Inspirační kapacita	IC = VT + IRV		1				
Expirační rezervní objem	ERV		1				
Expirační kapacita	EC = VT + ERV		1				
Vitální kapacita (změřená)	VC		1				
Vitální kapacita (vypočítaná)	VC = IRV + ERV + V_T		1				
• <i>FVC</i> , <i>FEV</i> ₁	· • I						
Usilovná vitální kapacita	FVC		1				
Jednosekundová kapacita	FEV ₁		1				
	$FEV_1/FVC \times 100$		%				
• Hyperventilace							
Frekvence	f		(počet dechů/min)				
Dechový objem	V _T		1				
Maximální Minutová Ventilace (MMV)	$\dot{\mathbf{V}}_{\mathrm{Emax}} = \mathbf{V}_{\mathrm{T}} \times f$		l/min				
• Apnoická pauza v inspiriu			S				
• Apnoická pauza v expiriu			S				

Překreslete a popište záznamy: → klidové dýchání a vitální kapacita

jednosekundová vitální kapacita (rozepsaný výdech vitální kapacity) zaznamenejte si změny křivky i při obstrukčním a restrikčním plicním onemocnění

Závěr:

•	• •	 • •	• •	• •	• •	• •	••	• •	• •	••	• •	• •	••	• •		• •	•••	• •	• •	• •	• •	•	• •		• •	• •	• •	 	•••	 • •	•••	• •	••	•••	•••	•••	 	• •	• •	••	• •	• •		••	• •	• •	••	• •	• •	• •	• •	• •	•
•	• •	 • •	• •	••	• •	• •	• •	• •	••	• •	• •	• •	• •	• •	• •	• •	•••	• •	• •	• •	• •	• •	••	••	• •	• •	• •	 	• • •	 ••	•••	••	• •	•••	• •	•••	 	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	·
•	• •	 • •	• •	••	• •	• •	• •	• •	••	• •	• •	• •	• •	• •	• •	• •	•••	• •	• •	• •	• •	• •	••	••	• •	• •	• •	 	• • •	 ••	•••	• •	• •	•••	• •	•••	 	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	•

Elektrický model aortálního pružníku

Průběh řady fyziologických funkcí i jejich regulaci lze dnes modelovat. Využíváme různých analogií pro sestavení například mechanických či elektrických obvodů. V dnešní době jednoznačně převažují modely počítačové.

V našem programu, který je instalován na osobním počítači, je simulace funkce aorty založena na jednoduchém pružníkovém modelu, jehož prapůvodem je analogie elektrického obvodu. Ten vychází z Ohmova zákona. Zjednodušeně řečeno - krevní tlak v aortě (P) je přímo úměrný objemu krve (V), který je ve fázi systoly vyvržen do aorty. Tomuto ději odpovídá rovnice P = (V - Vo)/C, kde Vo je objem aorty při nulovém tlaku a C = poddajnost - pružnost (compliance), vyjádřená v ml/mmHg. Rovnice pro změnu tlaku (dP) a změnu objemu (dV) je dP = dV/C.

Výhoda předkládaného počítačového modelu spočívá v možnosti měnit pouze jednu fyziologickou veličinu (tepový objem, periferní odpor, pružnost aorty). Změnou pouze jedné veličiny vystoupí do popředí v "čisté podobě" změny krevního tlaku – a to jak systolického, diastolického, pulsového i středního. Tato modelace ale nemá kvalitu biologického pokusu – například na zvířeti, protože výše popsaný model nepracuje se zpětnými vazbami.

Hlavní záznam na obrazovce monitoru zobrazuje průběh aortálního tlaku v mmHg s časovou osou v sekundách, dolní křivka zobrazuje rychlost krevního toku v metrech za sekundu v oblasti ústí semilunární aortální chlopně.

Provedení:

- 1. Vzhledem k nové instalaci programu bude postup vysvětlen přímo v praktických cvičeních
- 2. Na obrazovku monitoru lze simulovat postupně 4 odlišné situace. Doporučujeme následující pořadí: výchozí klidové hodnoty, změna ve smyslu mínus, opět výchozí klidové hodnoty, změna ve smyslu plus.

Změny systolického výdeje

Zkontrolujeme, případně zadáme, vstupní veličiny, které modelově odpovídají klidovým fyziologickým hodnotám:

SV - systolický výdej = tepový objem	=	70 ml,
HR - tepová frekvence	=	75/min
R - periferní odpor	=	1 mmHg.s/ml
C - pružnost (compliance)	=	1,2 ml/mmHg.
	c · 1	. 1 / 1 1 1 /

Klikem na Graph se objeví tlaková křivka fyziologických hodnot.

Snížíme hodnoty SV (45 nebo 60 ml), počkáme na provedení simulace. Všímáme si změn.

Kliknutím na Reset parameters se vrátíme k fyziologickým hodnotám.

Zvýšíme hodnoty SV na 80ml a klikem na Graph počkáme na simulaci.

Pozorované změny systolického a diastolického krevního tlaku, středního tlaku a tlakové amplitudy zaznamenáme do protokolu a popíšeme.

Vyčistíme obrazovku kliknutím na *clear graph* a obdobným způsobem modelujeme další veličiny:

Změny periferního odporu

Vstupní hodnoty: snížený periferní odpor R = 0.5 - 0.8 mmHg.s/mlzvýšený periferní odpor R = 1.2 - 1.5 mmHg.s/ml

Změny pružnosti cév - compliance

Vstupní hodnoty: hodnoty snížené compliance $\overline{C} = 0.5$ ml/mmHg hodnoty zvýšené compliance $\overline{C} = 2.0$ ml/mmHg

Srdeční zástava

Vstupní hodnoty: SV = 0

Protokol: překreslete schematicky namodelované záznamy, popište slovně změny Změna systolického objemu

Změna periferního odporu

Změna pružnosti cév (compliance)

Zástava srdeční

Zájmová úloha:

Namodelujte a do závěru popište změny TK v průběhu pobytu v sauně:

- 1. Pobyt v sauně (teplo snižuje periferní odpor).
- 2. Zchlazení ve studené vodě (chlad zvyšuje periferní odpor).
- 3. Namodelujte průběh TK v průběhu pobytu v sauně u dítěte, popište.

(děti mají vysokou elasticitu – compliance - cév)

4. Namodelujte průběh TK v průběhu pobytu v sauně u osob se sníženou elasticitou cév, popište.

Závěr:	 	