NUTRITION IN CRITICALLY ILL

Dr.Katarina Zadrazilova

University Hospital Brno April 2012

Overview

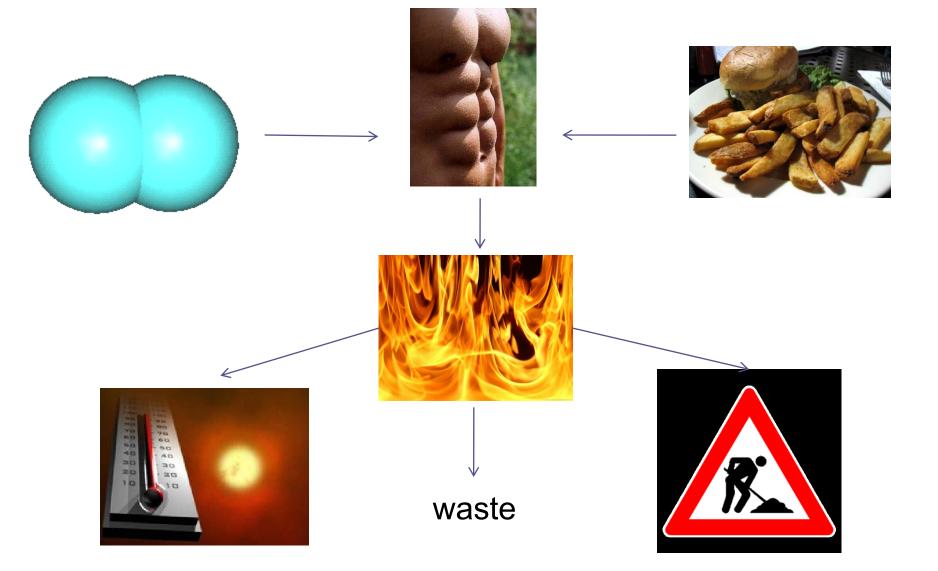
- Nutrients and energetic requirements
- Indications for nutritional support
- Route of nutrition
- Enteral and parenteral nutrition
- Complications of nutritional support

Is it important?

- Up to 60 % of patients in hospital are either malnourished or at risk of becoming malnourished
- Leads to increased hospital days
 - Number of complications
 - Mortality

Is it important?

Inadequate nutrition of critically ill patients leads to **muscle wasting** that would lead to worse prognosis, increased complications and at the end worse survival rate


Malnutrition

- Deficiency either of total energy or of protein (or other nutrients) leads to a reduction in body cell mass and organ dysfunction
- As the result of
 - Inadequate intake
 - Reduced absorption
 - Or increased requirements

Malnutrition

- Deficiency either of total energy or of protein (or other nutrients) leads to a reduction in body cell mass and organ dysfunction
- As the result of
 - Inadequate intake
 - Reduced absorption abnormal nutrient processing
 - Or increased requirements

Energy conversion

Nutrients - fuel

- Carbohydrates
- Lipid
- Protein

Oxidative metabolism of organic fuels

Fuel	VO2 (L/g)	VCO2 (L/g)	RQ	Energy yield(kcal/g)
Lipid	2,0	1,4	0,7	9,1
Protein	0,96	0.78	0,8	4,0
Glucose	0,74	0,74	1,0	3,7

Respiratory quotient = VCO₂/VO₂

Daily energy expenditure

- Predictive equation
- Indirect calorimerty
 - Based on VO2 and CO2 production
 - Measured over 15 to 30 minut, extrapolated to 24 hours
 - Problems: bulky, expensive, not reliable in hypercatabolic state

Predictive equation

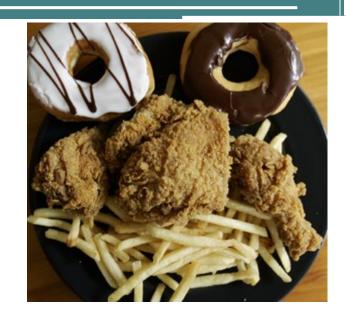
- Harris Benedict Equation basal metabolic rate In kcal/day.
- For 3: BMR = 13.75 x weight (kg) + 5 x height (cm) 6.78 x age (years) + 66
- For \bigcirc : BMR = 9.56 x weight (kg) + 1.85 x height (cms) 4.68 x age (years) + 65

Nutritional requirements

- Around 25 kcal/kg/day
- Macronutrients : protein, lipid and carbohydrate provides the energy requirements
- Micronutrients (vitamins and minerals)
 - Cofactors for enzymes
 - Vitamins organic compounds
 - Trace elements ions

Carbohydrates

- EssentiaL fuel for CNS
- Provides 3.75 kcal/g in vivo
- 2 2,5 g/kg BW/day max 250 g/day
- Around 70% of the nonprotein calories
- CNS relies on glucose as fuel source



Problems with too much sugar

- Stimulate insulin release
 - Inhibition of lipolysis
- Promotes lipogenesis RQ = 8
- High RQ
 - CO2 abundance
- Need for regular glycaemia checks stormy changes of sugar metabolism in criticaly ill
- Many patients will need cont. insulin

Lipids

- Critically ill have difficulties in mobilizing their own lipids
- Provides 9.3 kcal/g highly energetic
- Calories from lipid should be limited to 30% of total calories
- Source of essential fatty acids linolenic acid (an omega-3 fatty acid) and linoleic acid (an omega-6 fatty acid)

Lipids

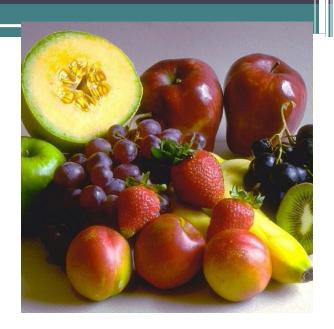
- Omega 6 (arachidonic acid, linoleic acid) have anti-inflammatory and procoagulant effect
 - Deficiency dermopathy, cardiac dysfunction, ↑
 susceptibility to infection
- Metabolites of Omega 3 lipids improve cellular, anti-carcinogenic, anti-inflammatory and vasodilating and anti-agregation effects

Lipids - contraindications

- Shock
- Serious coagulation disorders and haemorrhagic conditions
- Severe hyperlipaemia
- Fat embolism

Proteins

- Around 1.5 g/kg/day
- Provides 4 kcal/g
- Higher intake in hypercatabolism



Nitrogen balance

- N balance = (protein intake/6,25) (UUN+4)
- Negative N balance = High urinary Nitrogen = protein breakdown
- **Positive N balance** = enough calories to spare own proteins from being degraded
- Choice of amino-acids is very individual with monitoring urea levels in plasma and urine

Vitamins

- 12 essential
- Antioxidant vitamins
 - Vitamin C and E
- B1 thiamine
 - Deficiency presents with
 - Cardiac dysfunction beri beri
 - Wernicke's encefalopathy
 - Lactic acidosis
 - Peripheral neuropathy

Essential trace elements

- Seven trace elements
- Substance that is present in the body in less then 50 μg/g of body tissue
- Iron
- Selenium
 - antioxidant

Assessment of nutritional status

• ?

- Skin fold thickness
- Albumin, haemoglobin, transferrin
- BMI

• DO NOT REFLECT ACUTE CHANGE IN NUTRITIONAL STATUS

Assessment of nutritional status

- Targeted history and examination
- 1. Weight change
- 2. Changes in food intake
- 3. Gastrointestinal symptoms nausea, vomiting, diarrhoea and anorexia
- 4. Functional impairment muscle wasting oedema, ascites

Aim of nutritional support

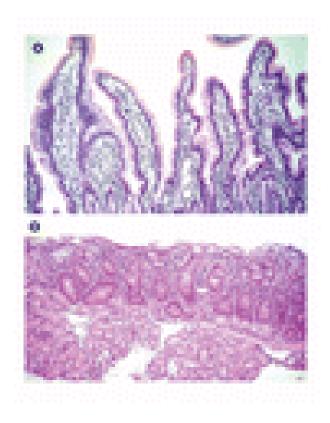
- Correct and prevent malnutrition
- Optimize patient's metabolic status
- Decrease morbidity and shorten recovery

Nutritional support

- I. Indications meeting criteria for nutritional support
- II. Setting of actual energetic requirements
- III. Route of nutrition
 - Oral
 - Enteral
 - Parenteral

Indications for nutritional support

- Malnutrition
- Burns, sepsis, polytrauma, MOF, etc
- Pre-op preparation and post-op care
- GI impairment pankreatitis, Morbus Crohn, colitis ulcerosa


Indications for nutritional support

- Neurologic indications myastenia, cerebrovascular disease
- Aktino and chemo therapy
- Geriatric patients

Route of nutrition

- Oral
- Enteral via a tube directly into gastrointestinal tract
- Parenteral intravenous (peripheral or central vein)

Depletion of nutrients in the bowel lumen is accompanied by degenerative changes in the bowel mucosa

Route of nutrition - preferred

- Oral
- Enteral
- Far cheaper
- More physiological
- Reduce the risk of peptic ulceration
- Minimize mucosal atrophy
- May reduce translocation

Enteral nutrition

- Indicated when oral nutrition inadequate for 1-3 days
- Short term 3 to 6 wks
 - Nasogastric or nasojejunal tube
- Long term more then 6 wks
 - Surgical jejunostomy or percutaneous gastrostomy

Enteral nutrition

- Nasogastric most common in ICU
- Potential problems malposition, difficulty swallowing or coughing, discomfort, sinusitis and nasal tissue erosion
- Nasal tube contra-indicated in a patient with a base of skull fracture
- **Orogastric** to reduce sinusitis

Enteral nutrition - post-pyloric feeding

- Nasojejunal or jejunostomy
- Avoids the problem of gastroparesis
- Recommended for patients at high risk of aspiration
- Patients who are intolerant of gastric feeding

Enteral nutrition - contraindications

- Acure abdomen
- Bowell obstruction
- Profuse vomiting, diarrhoe
- Gastroparesis, ileus
- Narrow stenosis of GI trackt
- Toxic megacolon
- Relative CI: pancreatitis, GI fistulae, ischemia

Feeding formulas

- Caloric density –
 Carbohydrate content
- Energy high formulas –
 Excessive daily energy need and fluid restriction
- Osmolality carbohydrate content dependent
- Calorie: nitrogen ratio
- Carbohydrate: lipid ratio

Polymeric feeding formulas

- Mixture of intact proteins, fats and carbohydrates
- Require digestion prior to absorption
- Balanced amount of nutrients, vitamins and trace elements
- Tend to be lactose-free
- Low viscosity
- Preserved resorption
- Nutrison, Fresubin

Elemental (oligomeric) feeding formulas

- Macronutrients in a readily absorbable form
- Oligopeptides, oligosacharides, dextrines, essential fatty acids
- Low osmolality and viscosity
- In patients with decreased absorption of GI tract
 - Severe malabsorbtion of pancreatic insuficiency

Nutrini

Peptisorb 1.0 and

PEPTI 2000 , Peptisorb, Survimed

Disease-specific formulae

- Usually polymeric
- 1. Liver disease low Na and altered amino acid content (to reduce encephalopathy)
- 2. Renal disease low phosphate and potassium,
 2kcal/ml (to reduce fluid intake)
- 3. Respiratory disease high fat content reduces CO2 production.

Specific additives

- Glutamine
 - Thought to promote anabolism
 - Intestinal growth factor
- Omega-3-fatty acids
- Fiber alleviates diarrhoea

Parenteral nutrition

- Unphysiological, bypasses liver
- Rapid atrophy of GI mucosa
- Expensive
- Risk of infections and thrombotic complications
- Central vein hypertonic solutions
- Peripheral isotonic solutions large volumes

Parenteral nutrition

- Can be used to supplement enteral nutrition short gut syndrome
- Sole source of nutrition: total parenteral nutrition
- Evidence that PN is better than no nutritional support
- Given as separate components or all-in-one

Parenteral nutrition

- Proteins given as amino acids including essential amino acids
- Lipid commonly given as Intralipid
 - an emulsion made from soya with chylomicron sized particles
- Carbohydrates glucose
- Electrolytes & Micronutrients included or given separately

Complications of nutritional support

- Refeeding syndrome
- Overfeeding
- Hyperglycaemia
- Specific complications of enteral nutrition
- Specific complications of parenteral nutrition

Refeeding syndrome

- Severely malnourished or prolonged starvation
- Starvation causes a loss of IC electrolytes (Na K pump failure) – IC stores depleted
- Carbohydrate causes an insulin-dependent influx of electrolytes rapid and severe drops in serum levels of P, Mg, K and Ca
- Weakness, respiratory failure, cardiac failure, arrhythmias, seizures and death
- Solution feed slowly

Overfeeding

- Deliberate overfeeding has been tried in an attempt to reverse catabolism but this does not work and is associated with a poor outcome.
- Can cause uraemia, hyperglycaemia, hyperlipidaemia, fatty liver, hypercapnia

Hyperglycaemia

- critically ill insulin resistant as part of the stress response
- Tighter BM control reduces in-hospital mortality, length of stay, ventilator days, incidence of septicaemia
- Continuous insulin infusion

Specific complications of enteral nutrition

- Aspiration of feed causing pneumonia
- Diarrhoea exclude other causes of diarrhoea,
 then a feed with more fiber can be tried

Specific complications of parenteral nutrition

- Related to insertion and presence of a central venous catheter
- Infection, trombosis
- Hepatobiliary disease fatty liver, cholestasis and acalculous cholecystitis

Summary

- Malnutrition is associated with a poor outcome in critical illness
- Enteral nutrition is the mainstay and should be started early
- Parenteral nutrition only in selected patients
- Glucose control with insulin therapy and important not to overfeed

Questions?

