
Cytogenetics & Integrated laboratory of molecular cytogenetics, Brno

What are we going to talk about?

- 1. What is cytogenetics
- 2. History
- 3. Chromosome morphology and aberrations
- 4. Molecular cytogenetics and its techniques
- **5**. Case interpretation
- 6. Our laboratory and work

1. What is cytogenetics?

Cytogenetics is a branch of genetics focusing on the study of chromosome changes (number, morphology, numerical and structural abnormalities, segregation in normal and pathological conditions) and their correlation with phenotype.

2. Just a little history...

- 1866 Gregor Johan Mendel Experiment in Plant Hybridization
- Father of genetics
- Defined the basic principals of heredity (principle of segregation and combination)
- During his life, his work was ignored
- Later, Mendel s work was rediscovered
- 1910 Thomas Hunt Morgan proved that genes are located on chromosomes (using Drosophila)
- 1953 James Watson and Francis Crick determined DNA structure
- 1956 Tjio, Levan Human chromosome number is 46

Development of human cytogenetics

- **____Dark Ages"** the development and improvement of tissue culture techniques
- "Hypotonic Period"
 - hypotonization of cell samples (1951 0,075 m KCl)
 - using phytohaemagglutinin (PHA) stimulation of peripheral blood lymphocytes - 1960
- "Trisomy Period trisomy of chromosome 21-1959
- The first deletion syndrome "Cri du chat" 1963
- **"Banding Area** chromosome banding techniques 1968 1970
- "Molecular Area"
 - in situ hybridization technique 1970
 - FISH 1986
 - Comparative genomic hybridization (CGH) 1992
 - Spectral karyotyping (M-FISH, SKY) 1996
 - M banding 2001
 - Array CGH molecular karyotyping

"take home message"

Basic conditions for development of human cytogenetics

- improved techniques of cell cultivation in vitro
- use of hypotonic solution (0.075 M KCl)
- establishing squash techniques
- use of colchicine arrest of mitotic division
- 1% orcein staining

Nomenclature of human chromosomes

- > 1960: Denver Conference sort of human chromosomes into according to size and shape
- 1963: London Conference chromosomes are sorted into 7

groups A – G

> **1966:** Chicago *Conference* - the description of chromosome

changes

- 1971: Paris Conference the identification and labeling of chromosomes using banding techniques
- An International System for Human Cytogenetic Nomenclature

(ISCN 1978)

I S C N 1995

An International System for Human Cytogenetic Nomenclature (1995)

Editor: Felix Mitelman

Recommendations of the International Standing Committee on Human Cytogenetic Nomenclature

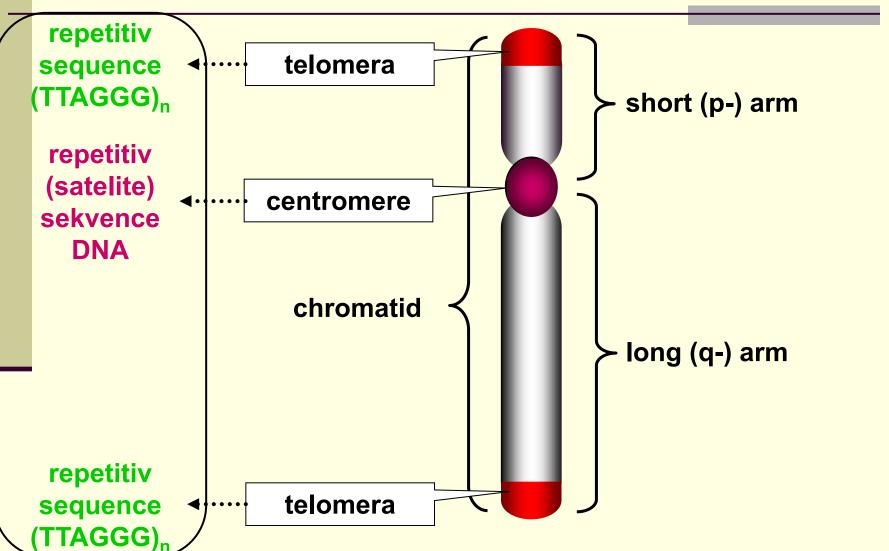
-

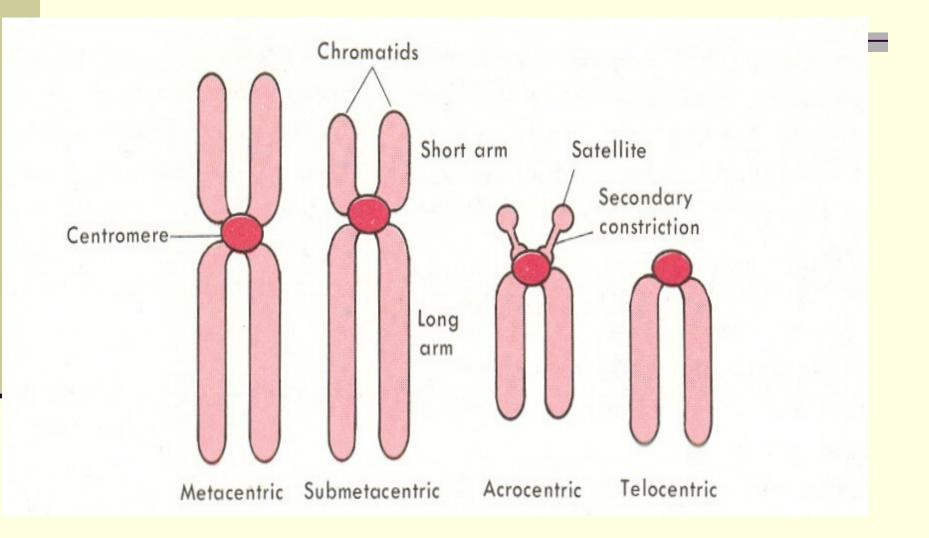
An International System for Human Cytogenetic Nomenclature (2005)

Editors: Lisa G. Shaffer, Niels Tommerup

Recommendations of the International Standing Committee on Human Cytogenetic Nomenclature

KARGER

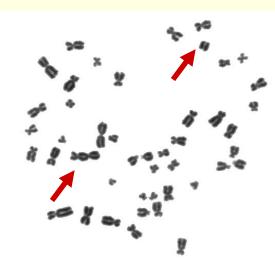

Published in collaboration with Cytogenetics and Cell Genetics


Published in collaboration with Cytogenetic and Genome Research

3. Chromosome morphology

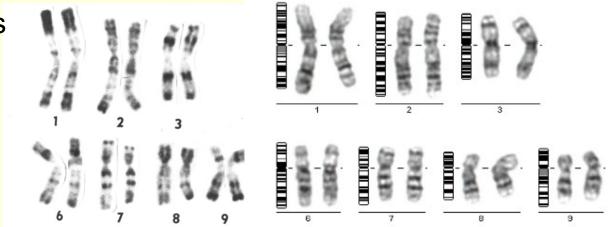
DNA

Chromosome morphology

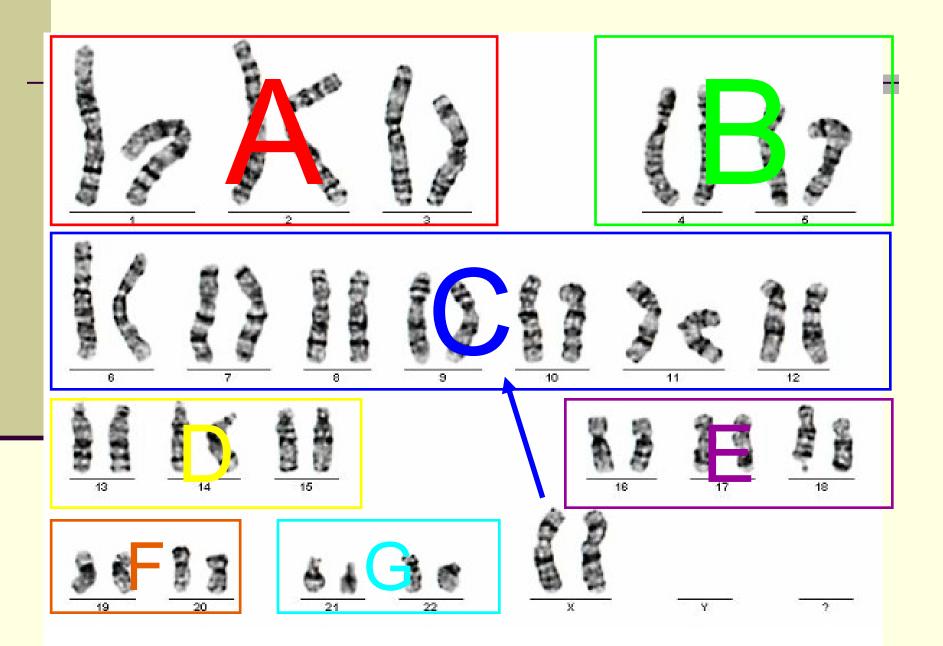

Chromosome painting

Classical painting

- using Giemsa Romanowski solution
- gained chromosomes aberation detection


<mark>G</mark> – bands

using trypsin, salty solution and Giemsa each chromosome has characteristic stripes congenital chromosomes aberation detection



R – bands

- using salty solution of different pH and temperature
- reverse to G bands

Human caryotype

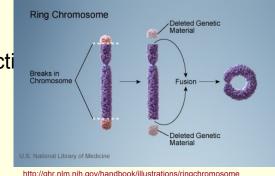
Caryotype of animals

		8	2	A.10	8	<u>fi</u>	Î,	Û	0	0			\$	8	A	3		4		R	Å	1	A	Q		ŝ	
1		8	•	8		â	1	0		12	ß	A 8	Ą			10	6 9			ŧ	8	ł	Ø 1	A		ß	
A (ß	8		ŝ		Ą		1		18	8	°	ê	9 8 16		10	6 8			ß	19	I	n 2	â		ħ	
1 9	6	1 2		A	A 21	ñ 2	A	û 2	A 3	1 A 24	n (_	ለ ሰ 23		8 ð 24		0 0 25	1	A Q 26		ð A 27		_) 28			2 9
1		8 2		ñ	A 27	\$	6	6	(Å Å	A (30		4 4 31	A	ð A 32	A 33	8 A 34		6 A 35	•	36	6	A	4	38	3	8
cat					-	X	X	8	8	8 8 °	ស៊ី (ñ	X X 5													d	og
						×	6 3 11	x	7	8 8 8 8 13	ة ة •		8 X 19		8 8 ×												
							1 4	۵ ۱	۸ 5	л (16	ß (17		0 0 18	l	0 0 19												
						Ĥ	20	0	1		23	ĥ	24 38				horse	ò									

"take home message"

Human somatic cell contains

- 23 pairs or 46 chromosomes
 - 22 autosomic pairs
 - 1 gonozomic pair (XX or XY)


7 groups ordered according to chromosome size and morphology

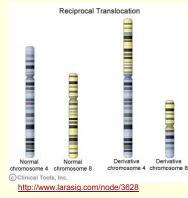
- A large metacentric chromosomes
- B large submetacentric chromosomes
- C middle size submetacentric chromosomes, X
- D large acrocentric chromosomes
- E small meta- to submetacentric chromosomes
- F the smallest metacentric chromosomes "ribbons"
- G small acrocentric chromosomes, Y

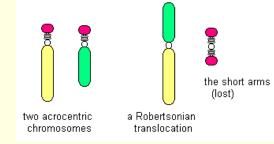
AUTOSOMIC

1. Structural

- Polymorphysm
 - different lenght of chromosomes in homologous pair
 - no phenotype effect
- Inversion
 - pericenric including centromere
 - paracentric does not include centromere
 - usually has no phenotype effect
- Ring chromosomes
 - breaks on both chromatides and their connecti
 - mental and physical retardation
 - always newly created
 - sometimes redundant

Deletion


- terminal one break
- intersticial two breaks
- deletion syndromes:
 - Wolf-hirschhorn syndrome; 4p deletion
 - Cri-Du-Chat syndrome; 5p deletion
- Microdeletion syndromes:
 - Prader-Willi syndrome; 15q11-12 deletion
 - DiGeorge syndrome; 22q13 deletion
 - Angelman syndrome; 15q11-13 deletion
 - Williams-Beuren syndrome; 7q11.23 deletion
- Insertion
 - inserted part can be in the same or inverted position


Translocation

- reciprocal
 - mutual exchange between two or more nonhomologic chromosomes
 - balanced no phenotype effect
 - genetic risics of unbalanced genom gamets formation

robertsonian

- between two acrocentric chromosomes
- breaks in the area of centromeres and deletion of short arms
- centric fusion of the remaining arms
- balanced normal phenotype
- tandem
 - deletion of part of an acrocentric chromosome
 - fusion of the remaining part with another chromosome

http://drugline.org/medic/term/robertsonian-translocation/

- 2. Numerical
 - Trisomy
 - 21 chromosome trisomy Down syndrome
 - 18 chromosome trisomy Edwards syndrome
 - 13 chromosome trisomy Patau syndrome
 - Triploidy
 - 69 XXX, 69 XXY
 - nonviable
 - mosaic triploidy mental retardation, syndactyly, abnormal genitals, lateral asymetry

GONOSOMIC

Chromosome Y

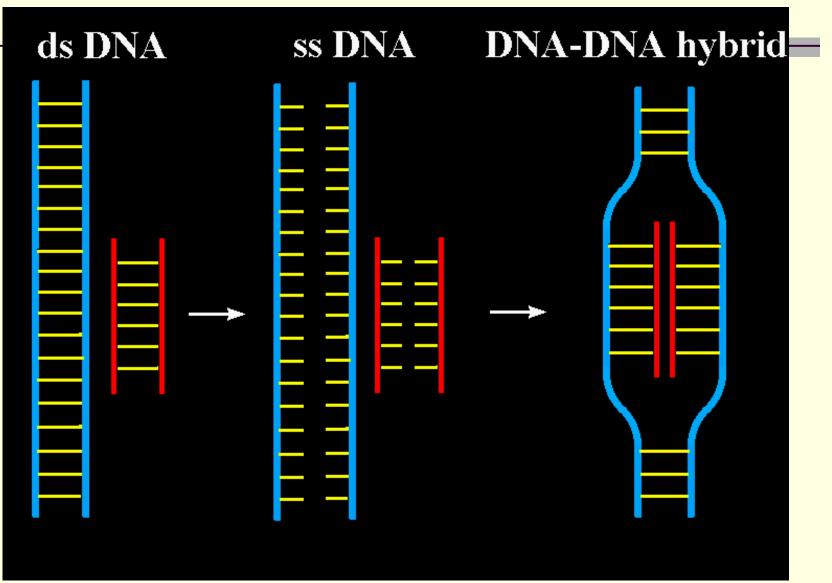
- structural aberrations very rare
- numerical aberrations
 - 47, XYY supermale syndrom
- Chromosome X (male)
 - Numerical aberration
 - 47, XXY Klinefelter syndrom
- Chromosome X (female)
 - numerical aberrations
 - 45, X Turner syndrom
 - 47, XXX XXX syndrom
- Fragile X fraX

- the most common cause of mental retardation
- Nonspecific phenotype

4. Molecular cytogenetics

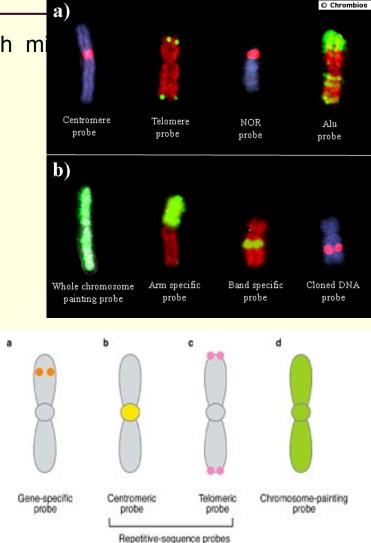
presents the connections between classical cytogenetics and molecular biology

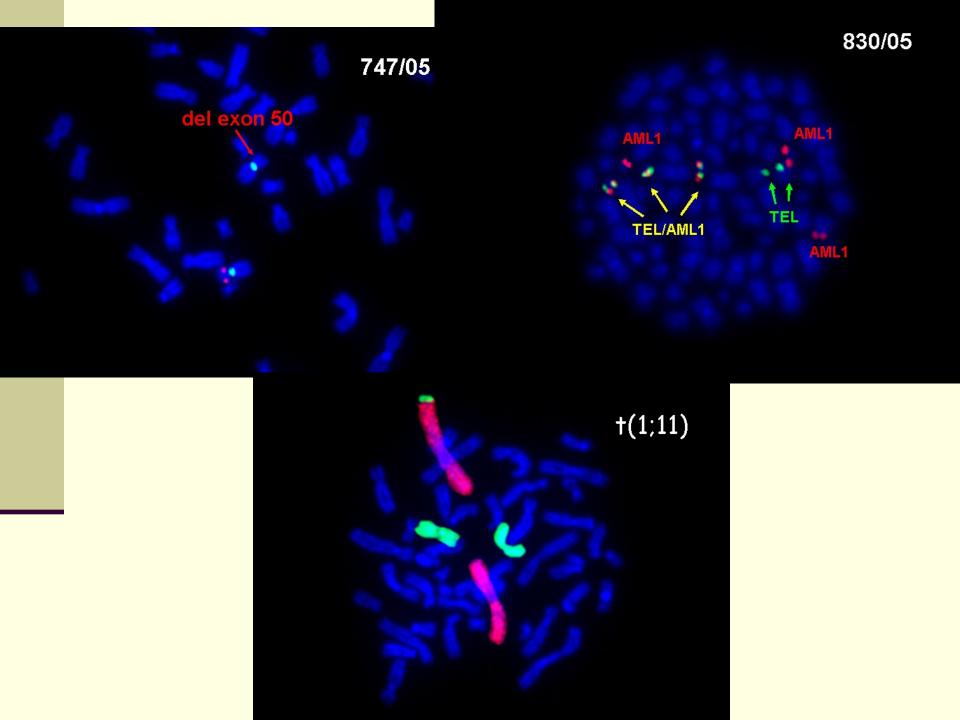
- utilizes the latest knowledge of molecular biology, microscopy and computer image analysis to study the structure and properties of chromosomal changes
- allows the analysis of numerical and structural chromosomal imbalances unidentified classical cytogenetic techniques
- does not require the presence of mitosis
- sources of material for cytogenetic investigation
- samples from different tissues
- amniotic fluid cells, chorionic villi, placenta umbilical cord blood
- bone marrow
- samples of solid tumors


peripheral blood

bone marrow

FISH


fluorescent in situ hybridization



FISH

 detection of the fluorescent signals through mi specific fluorescent filters

- material
 - cultivated peripheral blood
 - cultivated bone marrow
 - cultivated amniotic fluid cells
 - uncultivated amniocytes
 - tumor and bone marrow prints
- we determine:
 - 1. presence of signals
 - 2. number of signals
 - 3. position of signals
- the use of FISH
 - clinical cytogenetics
 - onco cytogenetics
 - human genom mapping

Advantages and disadvanages of FISH

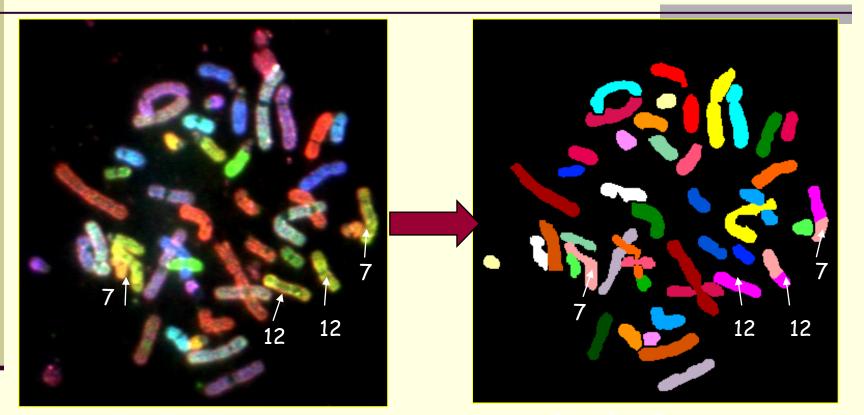
advantages

- does not require the presence of mitoses (mostly)
- quick assessment of big amount of cells

disadvantages

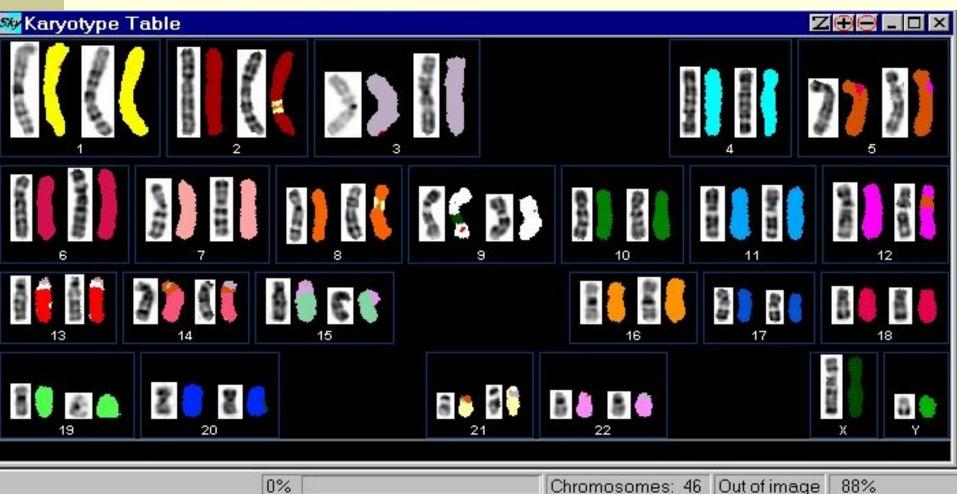
does not provide whole genomic view

SKY spectral caryotyping


mikroskop equipped with 2 fluorescent filters (SKY, DAPI)

fluorochromes (FITC Rhodamin TexasRed Cy5 Cy5.5) scanned by one filter, based on a wave lenght each chromosome pair is coloured — pseudocoloures

Image Acquisition with SkyVision[™]


Picture analyse using SkyView

Display Image

Classified Image

The objective of the SkyView spectral karyotyping software is to automatically classify and karyotype chromosomes in the Display image, thereby overcoming the ambiguity inherent in the display colors.

Chromosomes: 46 Out of image

88%

Advantages and disadvantages of SKY

advantages

- detects balanced rearrangements
- detects aberations in one step
 - kryptic translocations and insertions
 - marker chromosomes
 - redundant material with unknown origin
 - komplex rearrangements

disadvantages

- need of quality mitoses
- succesful hybridisation
- expensive method

a modification of FISH technique to measure DNA gains or losses throughout the entire genome

enables detection of unbalanced chromosomal changes (gains or losses) throughout an entire genome in one hybridization reaction

is based on comparison of two genomes

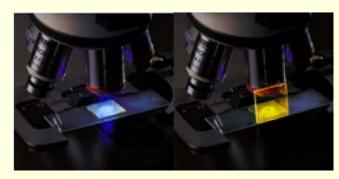
Conventional FISH

normal DNA \rightarrow select DNA \rightarrow make probe \rightarrow label abnormal target \rightarrow abnormal target identified

Comparative genomic hybridization

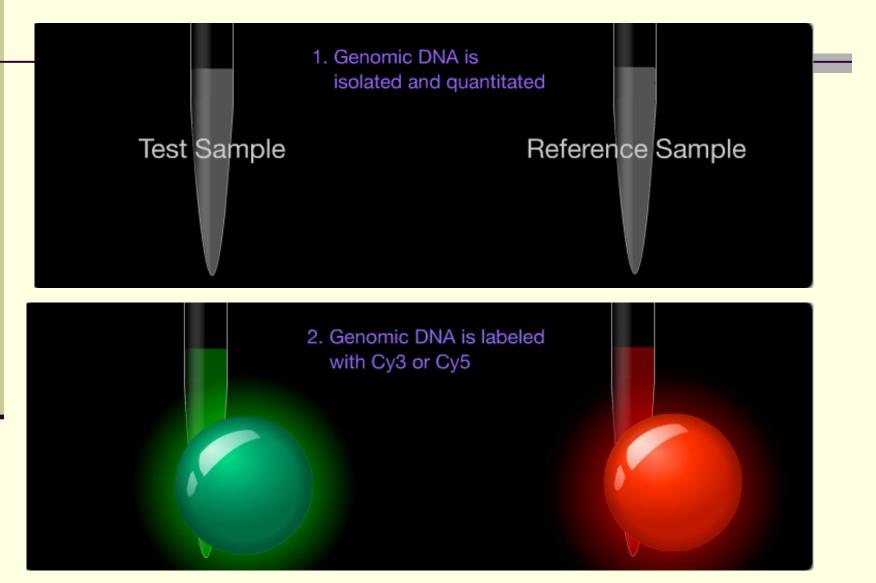
normal DNA \rightarrow no DNA selection \rightarrow make probe (entire genome) \rightarrow quantify on normal target \rightarrow abnormal genome quantified

CGH requirements

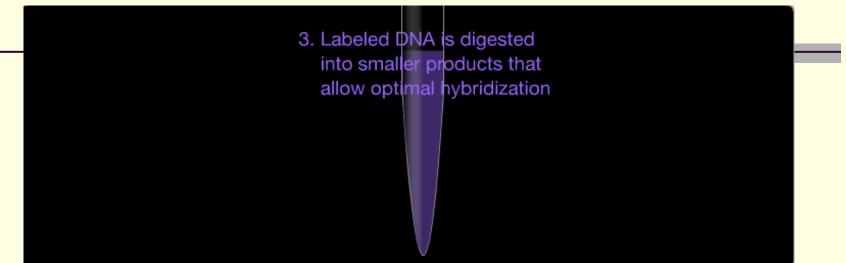

Materials :

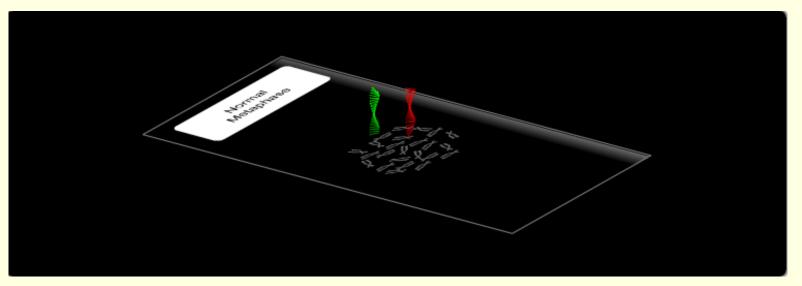
- Good quality DNA isolated from
 peripheral blood
 - bone marrow
 - solid tumour
 - amniocytes

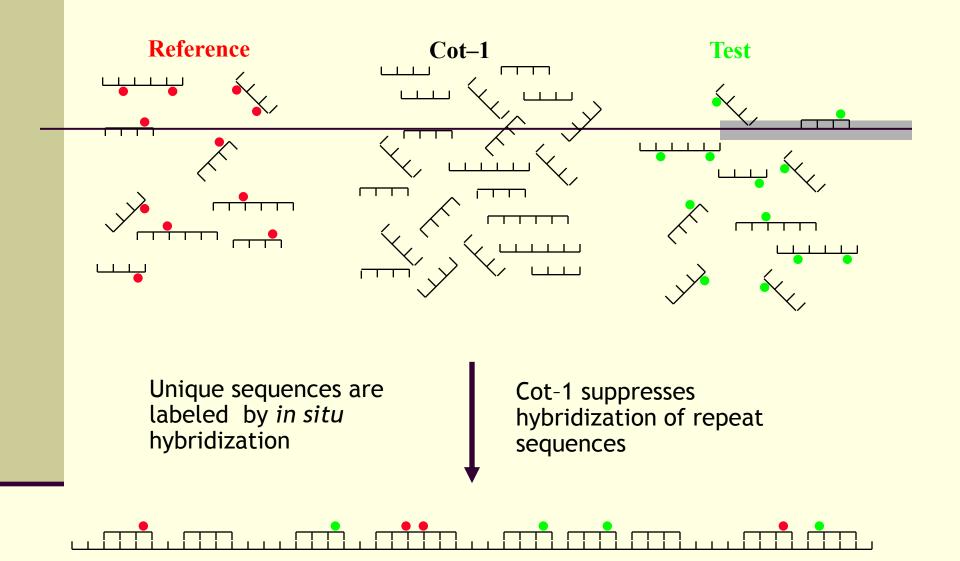
Equipment :


•Fluorescent miroscope (filters DAPI, SpGreen, SpRed)

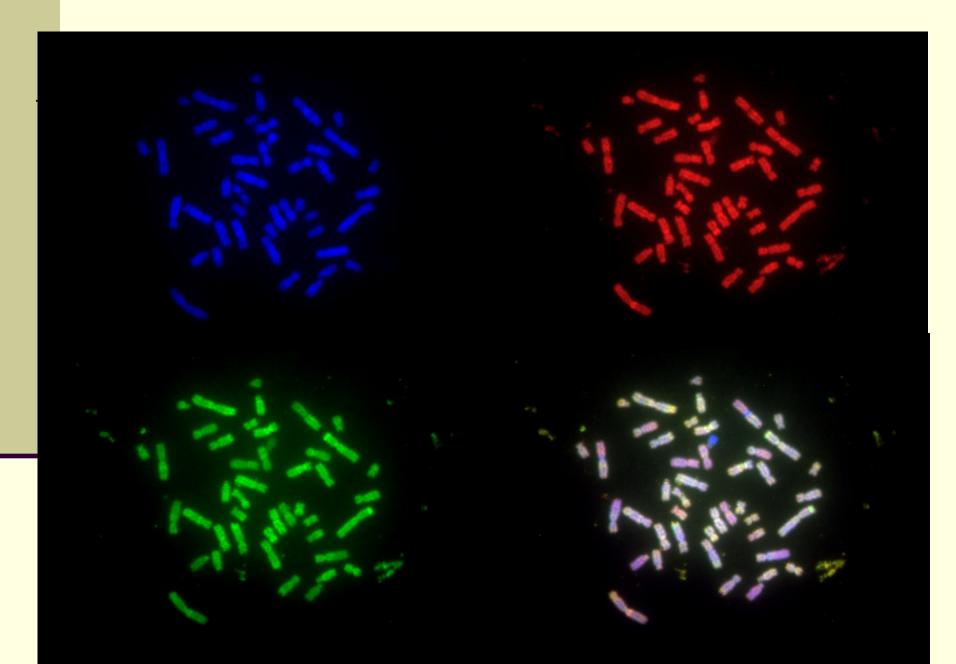
- Sensitive CCD kamera
- Computer with software for CGH analysis and data interpretation (LUCIA CGH Advanced Statistics, Laboratory Imaging Ltd., Prague, Czech Republic)



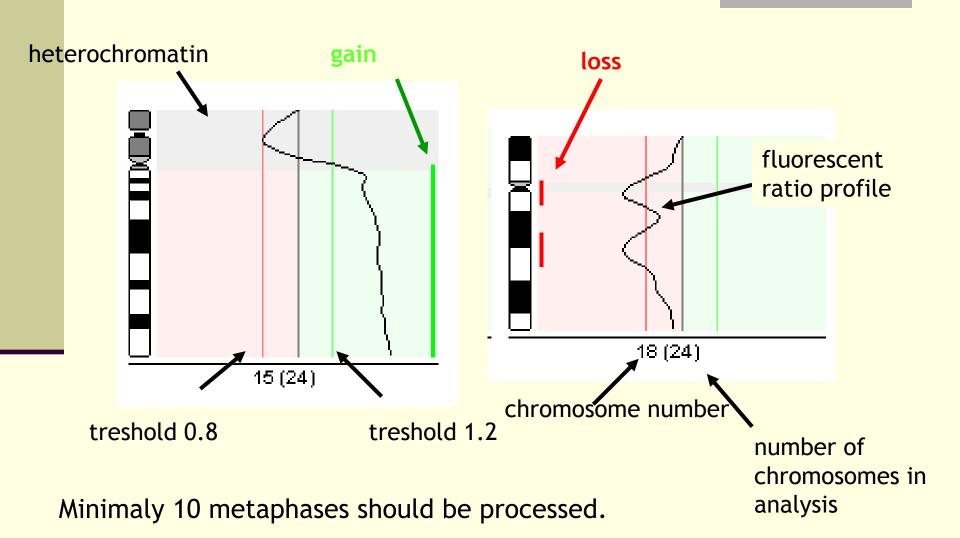

CGH principle

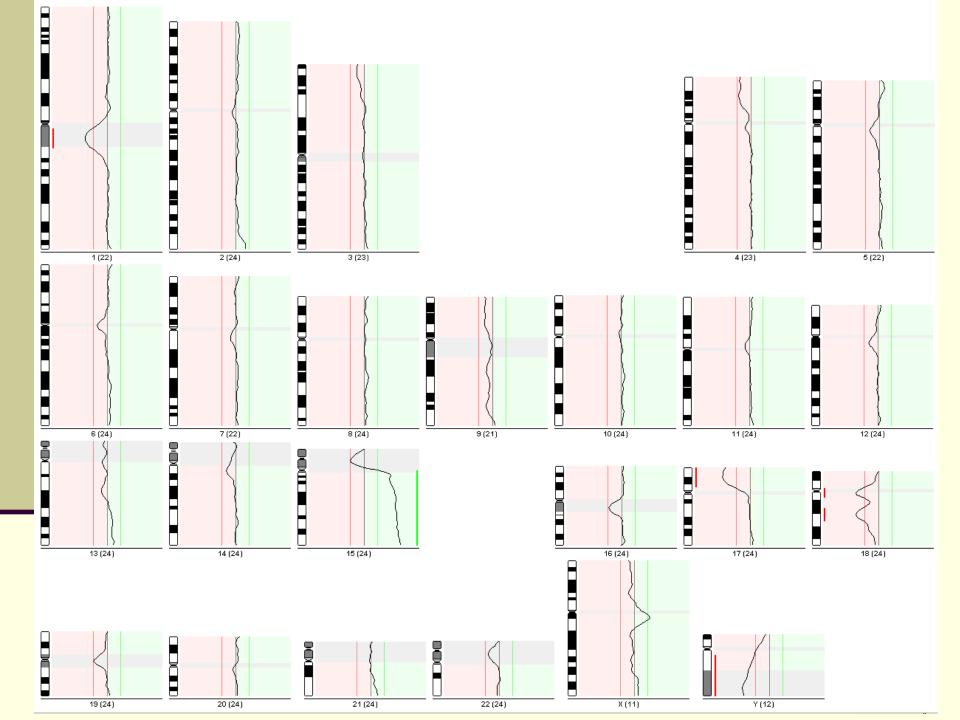

www.abbottmoleculars.com

CGH principle



www.abbottmoleculars.com


Relative brightness depends on amount of labeled DNA with appropriate complementary sequences, i.e. on the DNA copy number at this locus


Mitoses scanning, CCD camera filters for B, G, R

Identification of aberrations

Flore scent ratio profile is compared to the fixed tresholds (15-20% from ratio 1). The ratio profile that deviates 15 % - 20 % from ratio 1.0 is typically regarded as aberrant.

Advantages of CGH

- detects and quantifies DNA copy number gains and losses throughout an entire genome in a single analysis
- does not require cell culturing and metaphases from test tissue
- is able to identify not only the chromosome from which the additional unknown material is derived, but also to map the region involved to specific bands on the source chromosome
- in combination with whole-genome PCR, can analyze DNA from a single or very few cells

Disadvantages of CGH

low genomic sensitivity: about 10 Mbp for single copy changes

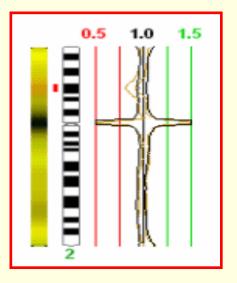
solution: microarrays

does not detect balanced rearrangements (inversions, balanced translocations)

solution: mFISH

cannot detect overall ploidy changes, e.g. tetraploid tumor

solution: use in conjunction with regular FISH

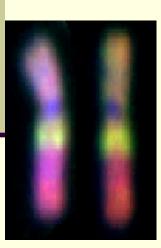

requires minimally 50 % aberrant cells for reliable results

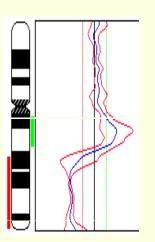
solution: HR-CGH, microarrrays

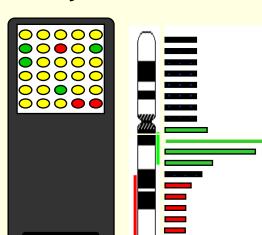
Modifications of CGH

High Resolution Comparative Genomic hybridization (HR-CGH)

- Kirchhoff et al., 1997
- the same principles and laboratory processing as CGH
- different data interpretation based on dynamic standard
- reference intervals special software
- genome resolution is about 4 Mbp
- abnormal cell detection limit is about 30 %

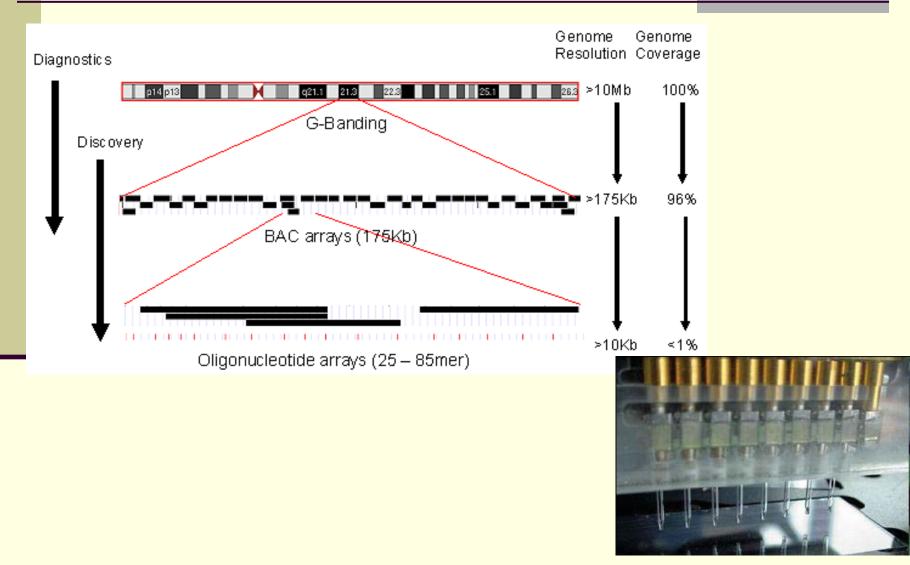


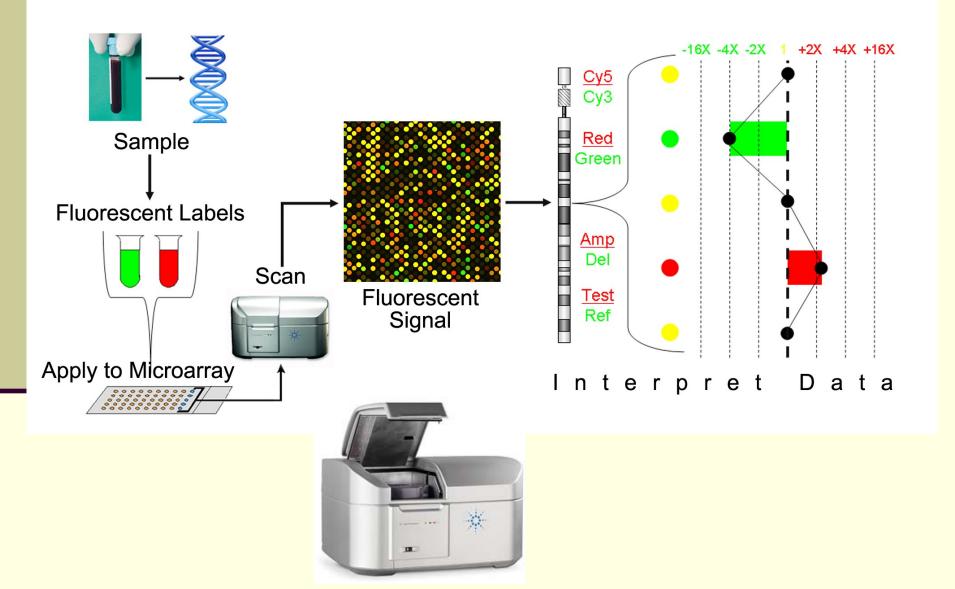

Modifications of CGH

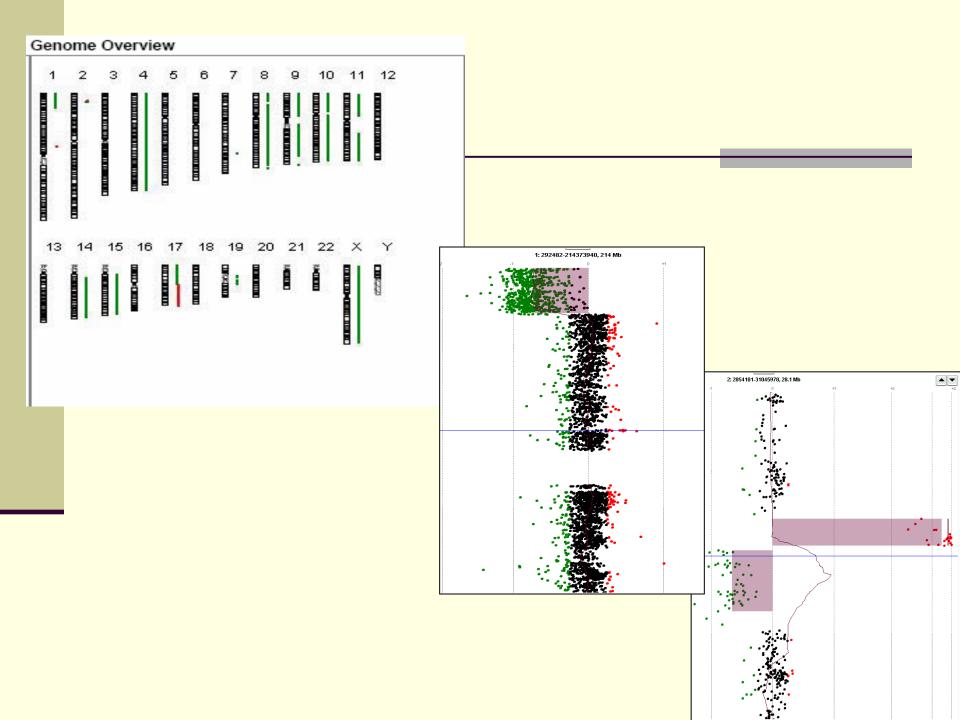

Array-CGH

- Solinas-Toldo et al. 1997
- based on principle of CGH
- the chromosomes (CGH) are replaced by separated clones (array-CGH)
- miniaturized array of DNA (genetic material)

CGH



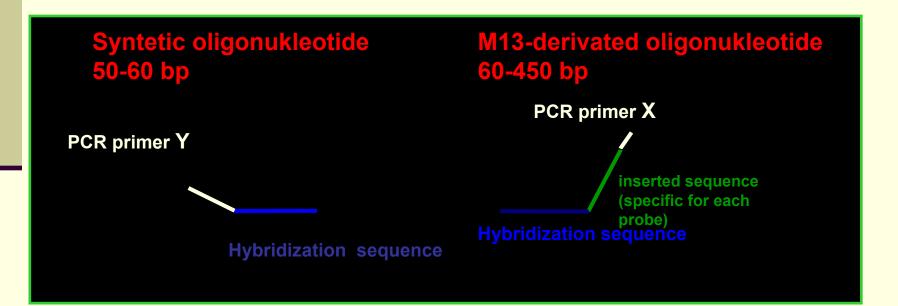

array-CGH


The origin of clones

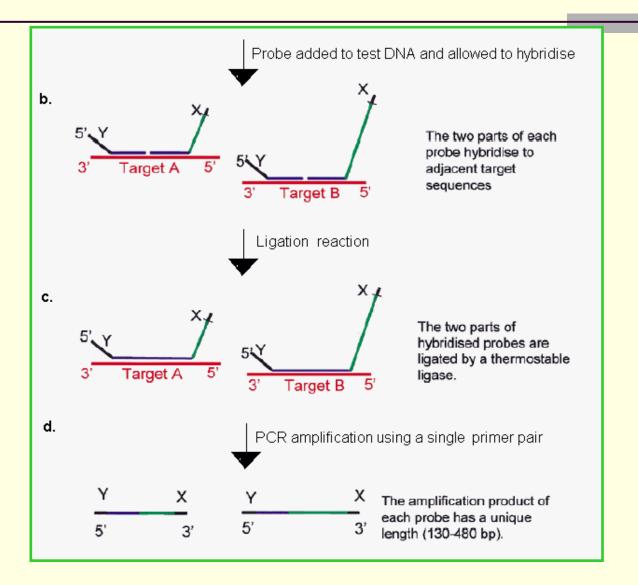
BAC, PAC, c-DNA clones, oligonucleotides

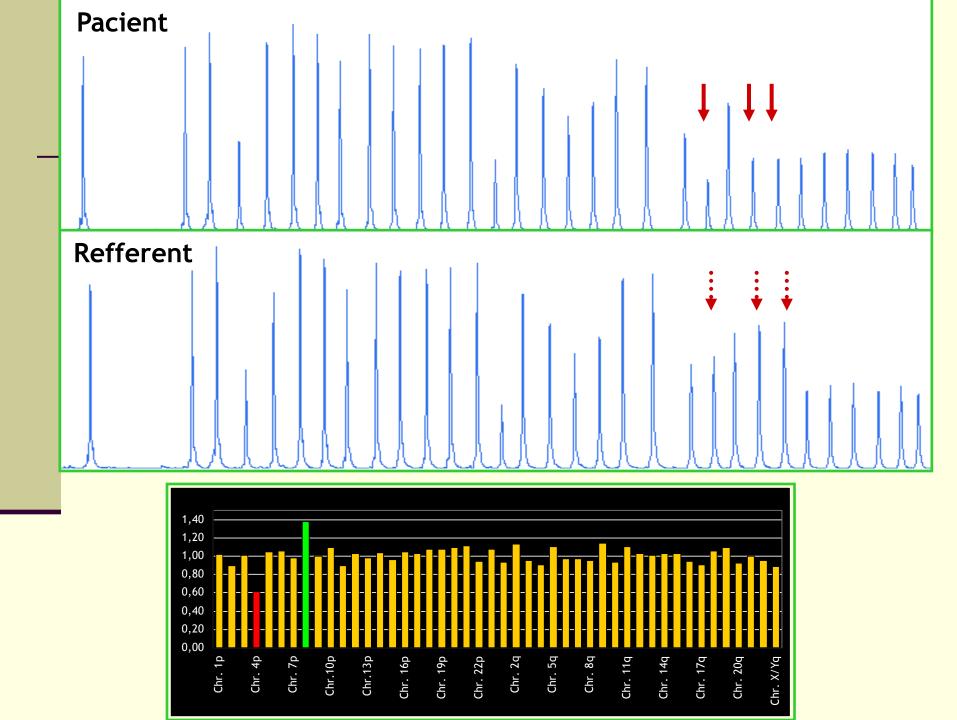
Array-CGH

Advantages and disadvantages of array-CGH


advantages

- detects and quantifies DNA copy number gains and losses throughout an entire genome in a single analysis
- precise aberration locating
- disadvantages
 - does not detect balanced rearrangements (translocation, inversion)
 - does not detect ploidy changes
 - very expensive method


MLPA


Multiplex Ligation-dependend Probe Amplification

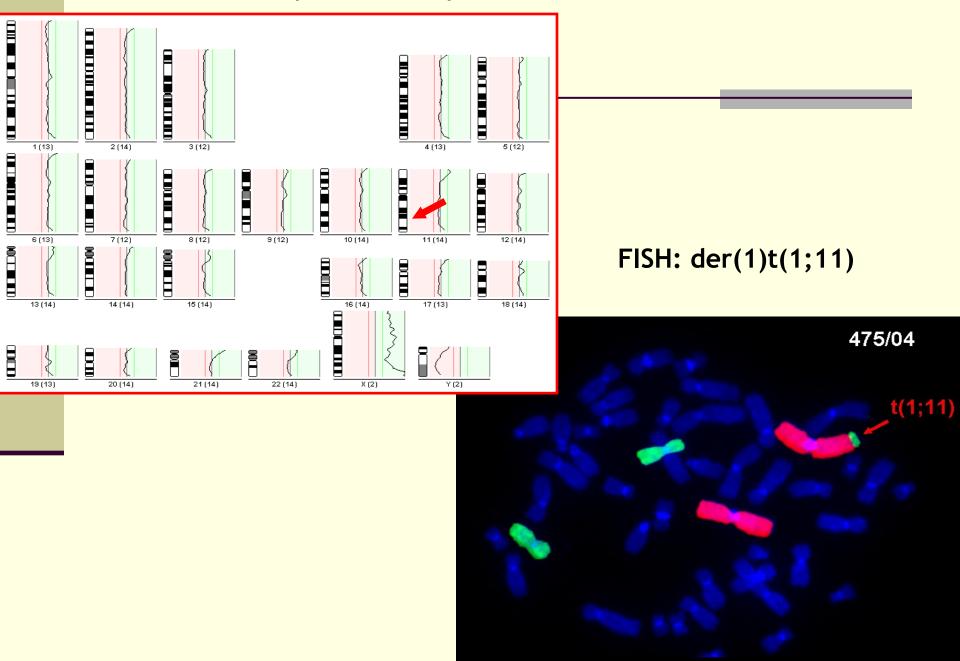
- sensitive method able to detect differences in one nucleotide
- detects changes of copy number in 45 sequences in one reaction
- simple all the reaction take place in one test tube
- relatively cheap method

MLPA principle

Advantages and disadvantages of MLPA

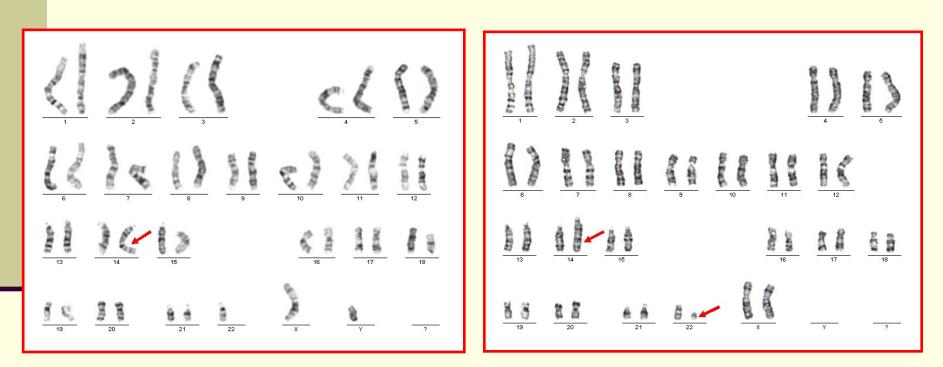
- advantages
 - sensitive
 - specific
 - multiplex
 - simple
 - cheap
- disadvantages
 - higly sensitive to contamination
 - time difficulty
 - the aberation have to occur in 50% of cells
 - some mutations or polymorphismus can lead to false results

5. Case interpretation 1

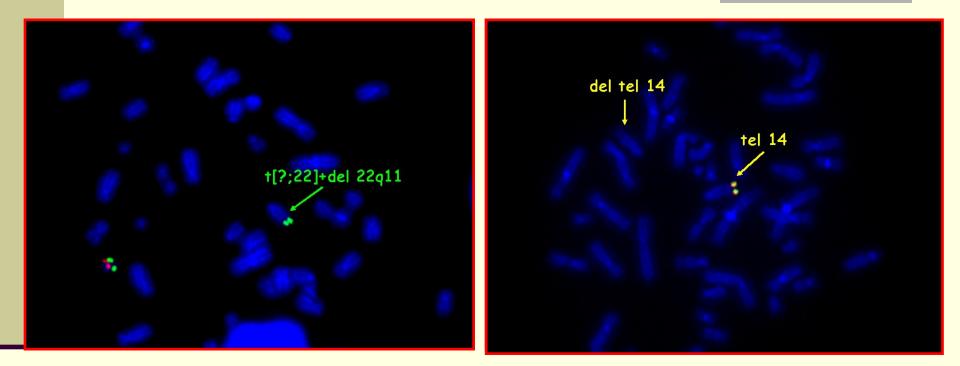

- girl, born in 2002
- dg: stigmata mongoloid eye position, hyperplastic gingival mucouse membrane, atypical chest and tummy
- mother 46,XX, inv(9), <u>father 46,XY,add(1)[87]/46,XY[13]</u>

Chesses of the second	2	3	(The S)			No.	and a second
S AND	Terry 7	a start	4545 P	0411 10	11 11	11000 12	
13	14	15			16	17	18
الله الله الله الله الله الله الله الله	20	21	<u> </u>	(Jacks)	X	Y	

46,XX,add(1)


CGH: rev ish enh (11p15-pter) – unbalanced translocation

Case interpretation 2

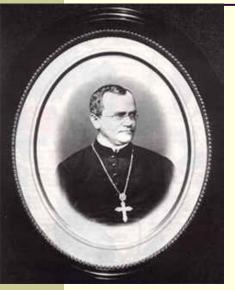

•boy, born in 2004

facial dysmorfy, stigmata

45,XY,-22,der(14)

46,XX,der(14)t(14;22)(q32.3;q11.2)

45,XY,der(14)t(14;22)(q32.3;q11.2) DiGeorge sy


46,XX,der(14)t(14;22)(q32.3;q11.2)

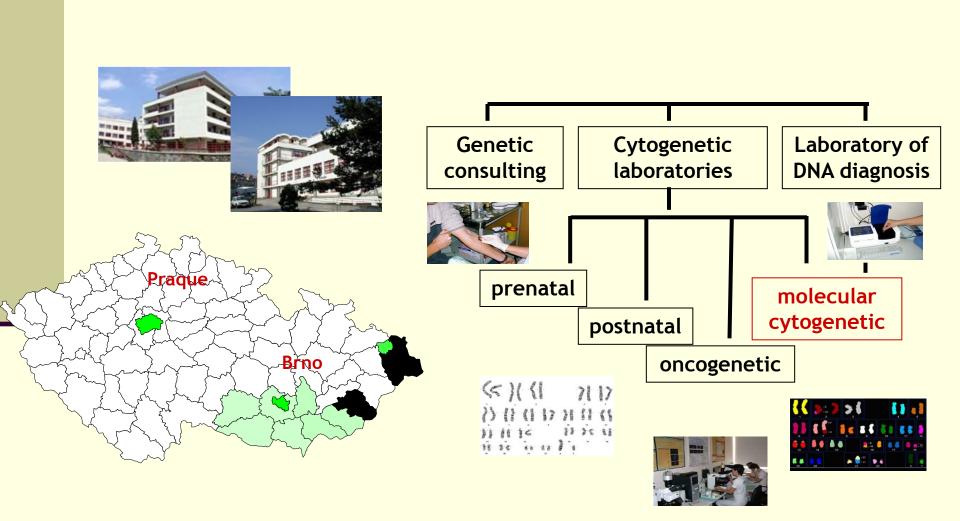
6. Integrated laboratory of molecular cytogenetics, Brno

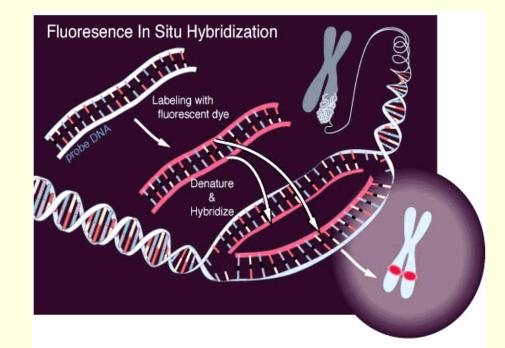
Brno, the cradle of genetics

Augustinian monastery in Brno - place of G. J. MENDEL s work

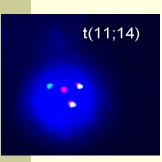
Who are we?

Integrated laboratory of molecular cytognetics is an integrated clinical and research centre, which is a result of co-operation among:

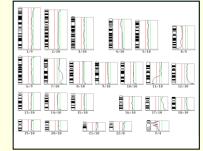

- Dept. of Genetics and Molecular Biology, Inst. of Experimental Biology, Faculty of Science, Masaryk University
- Dept. of Medical Genetics, University Hospital Brno
- University Research Centre Czech Myeloma Group Brno

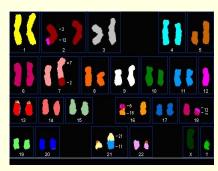


Department of Medical Genetics, University Hospital Brno: the centre for genetic investigation for South Moravia region

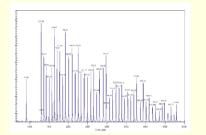


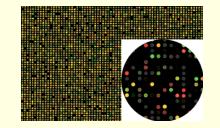
What is our interest?

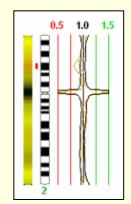

The main interest of the Integrated laboratory is the research of chromosomal aberrations using **molecular cytogenetic techniques.**



Methods




- Fluorescence in situ hybridization (FISH)
 - Spectral karyotyping (SKY)
- Comparative genomic hybridization (CGH)
 - High resolution CGH (HR-CGH)



- Array-CGH (Agilent)
 - MLPA

The equipment

Classical Cytogenetics, FISH, CGH/HR-CGH

- Microscopes Olympus BX61
- CD cameras Voskuhler
- Digital Image Analysis System (LUCIA, LIM Ltd.):
 - LUCIA-KARYO
 - LUCIA-FISH
 - LUCIA-CGH/CGH Advanced Statistics

System for SKY (SKY View – Applied Spectral Imaging Ltd, Israel)

- System for array-CGH: Agilent Scanner
- System for MLPA: capillary electrophoresis Beckman Coulter

Molecular cytogenetic investigations at Department. Of Medical Genetics

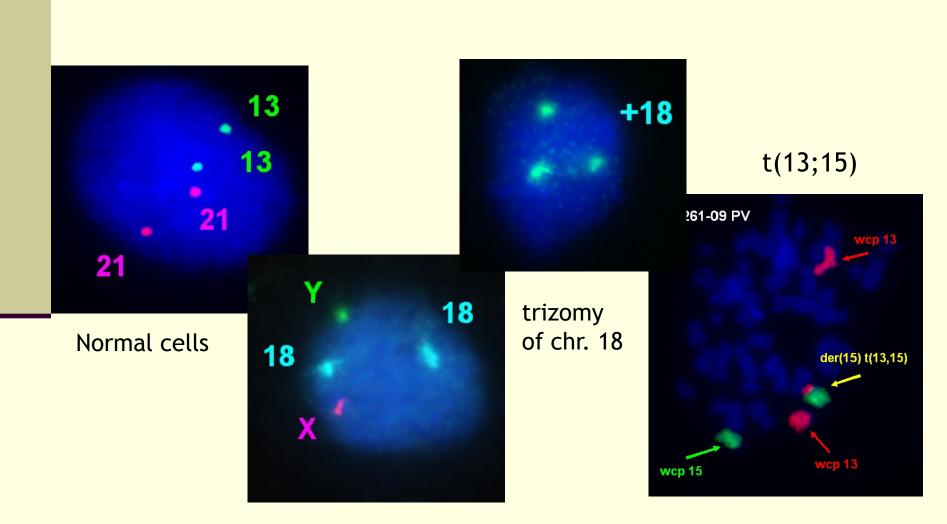
- Prenatal cytogenetic diagnosis
- Postnatal cytogenetic analyses
- Cancer cytogenetic analyses

Prenatal cytogenetic analyses

Uncultered and cultured amniotic cells, fetal blood, chorion villi I-FISH

AneuVysion Assay Kit (Abbott Vysis) Mix1:

- CEP 18 Sp. Aqua
- CEP X Sp. Green
- CEP Y Sp. Orange


Mix 2:

- LSI 21 Sp. Orange
- LSI 13 Sp. Green

Microdeletion syndromes (DiGeorge)

Prenatal cytogenetic analyses

Postnatal cytogenetic analyses

Peripheral lymhocytes, buccal swab
 FISH, CGH, HR-CGH, array-CGH, MLPA, SKY

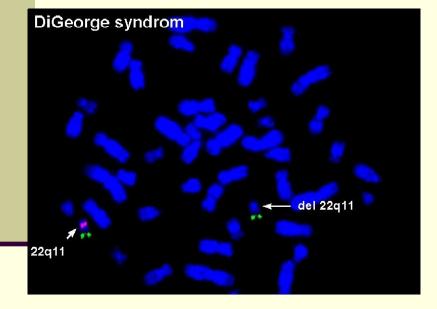
ToTel Vysion Kit, Abbott-Vysis

Microdeletion syndromes – FISH probes, MLPA kits P245, P297

DiGeorge syndrome

Prader-Willi/Angelman syndrome

Williams-Beuren syndrome

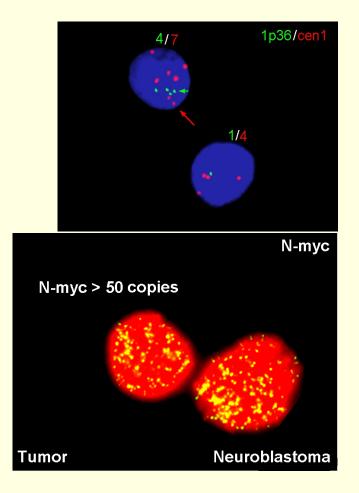

1p36 microdeletion syndrome

- Subtelomeric screening MLPA kits P036, P070 (MRC-Holland), ToTel Vysion kit (Vysis)
- Origin of marker chromosomes CGH, SKY, WCP FISH probes
- Identification and specification of numerical and structural aberrations – CGH, SKY

 Detection of gonosomal mozaics – FISH (X/Y probes) in infertile couples or gonosomal syndromes

Postnatal cytogenetic analyses

 $X \rightarrow Y$


 $\begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 3 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 3 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 3 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \begin{bmatrix} 1$

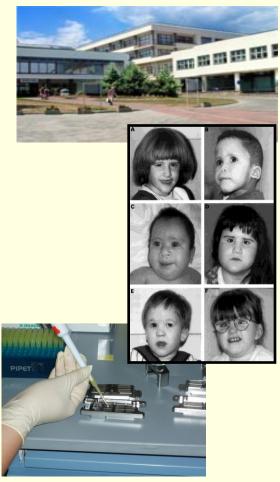
FISH: deletion of (22)(q11.2) (DiGeorge syndrome) SKY: marker chromosome identification (chr. 11)

Cancer cytogenetic analyses – solid tumours

- Cultivated and uncultivated solid tumors (tumour prints)
 FISH, CGH, SKY
- Children solid tumours FISH
 Neuroblastoma -MYCN amplification, 1p36 deletion, gain 17q, 11q deletion;
 Medulloblastoma - MYCN, MYCC amplification

CGH, array-CGH: whole genome screening

Cancer cytogenetic analyses – Hematolgical malignacies


Cultivated and uncultivated bone marrow FISH, CGH, SKY

```
CLL – CLL panel (Abbott-Vysis)
+12, RB1, ATM, p53
CML – BCR/ABL, +8
ALL – BCR/ABL, TEL/AML1,
MLL
AML – AML1/ETO, PML/RARA,
inv(16), MLL
MDS – del(5q31), del(7q21)
```

Acute myelogenous leukemia	t(8;21) t(15;17) inv(16),t(16;1 6)	AML1/ETO PML/RARA CBFB	
Acute lymphocytic leukemia	t(9;22) t(12;21) 11q23 del(9)(p21)	BCR/ABL TEL/AML1 MLL p16	
Chronic myelogenous leukemia	t(9;22) +8	BCR/ABL	
Chronic lymphocitic leukemia	+12 del(13)(q14) del(17)(p13.1) 11q23	RB1 p53 MLL	
Myelodysplastic syndrome	del(5)(q31) del(5)(q33) del(7)(q31)	EGR1 CSF1R	
Non-Hodgkin s lymphoma	t(11;14) t(8;14) t(2;5) 14q32 3q27	IGH/CCND1 IGH/MYC ALK IGH BCL6	

Research in the Integrated laboratory of molecular cytogenetics Dept. of medical genetics University Hospital Brno

- Detection of chromosomal aberrations in patients with mental retardation, stigmata and developmental delay
- Analysis of specific chromosomal changes in children embryonal solid tumours (neuroblastoma, brain tumours)
- Predictive and prognostic significance of genetic changes in cervical carcinoma (in co-operation with Masaryk Onkological Institute in Brno)

Research in the Integrated laboratory of molecular cytogenetics University Research Centre – Czech Myeloma Group

 Characterization of CHA in multiple myeloma with the accent on finding new CHA with prognostic significance

 Prognostic significance of clonal CHA in new treatment mehods of MM patients

 Molecular diagnostics of multiple myeloma using oligo array-based comparative genomic hybridization (array-CGH)

Thank you for your attention

