•Disorders of electrolytes and water balance

- Water
- Osmolality
- Electrolytes (ionts)

• Fluids

- Total body water volume: 60 % body weight, 40 L
- Body fluids/weight of adult
 - Male 55-60 %
 - Female 50-55 %
 - Newborn 75-80 %
 - Elderly decreases to 45-50% of body weight

Water content varies greatly from fat to muscle

• Loss of 20 % BF - fatal

•Compartments

- Intracellular (ICF)
 - 2/3 of body fluid
 - ★Located primarily in skeletal muscle mass
- Extracellular (ECF)
 - 1/3 of body fluid
 - Comprised of 3 major components
 Intravascular (plasma X serum)
 Interstitial (fluid in and around tissues)

★Transcellular

•Transcellular component

- < 1 % of BF
- Physiologically located in
 - Body cavities (CSF, synovial fluid), gastrointestinal tract, bones, ...
- Potential to increase significantly in abnormal conditions
 - Hydrothorax, ascites, haematoma (massive bleeding into joint or cavity), ileus (bowel obstruction)

Assessment of transcellular-spacing

Signs/Symptoms

- Decreased urine output with adequate intake
- Tachycardia
- Decreased BP, CVP
- Increased weight (in case od water intake)
- Reabsorption phase
 - Increased BP, CVP
 - Hyperhydration, risk of heart failure

•Water bilance (water exchanges)

Intake (mL)		Losses (mL)	
Beverages	1000-1500	Urine	1000-1500
Food	700	Insensible perspiration	400
Metabolic water	300	Respiratory	400
		Sweating	100
		Stool	100
		Drains,	??
	2,0 - 2,5 L		2,0 - 2,5 L

• Diuresis

Polyuria	> 2500 mL/24 hod
Normal amount of urine	500 - 2500 mL/24 hod
Oliguria	50 - 500 mL/24 hod
Anuria	< 50 mL/24 hod

•Serum osmolality: 275-295 mosm/kg < 240 or > 320 is critically abnormal

- The ratio of the amount of solute (particles) dissolved in a given weight of water
- The principal contribution to osmolality
 Na⁺ (Cl⁻, HCO₃⁻), urea, glucose

• Effective osmolality

- Osmolality by solutes, generating gradient in the cell (semipermeabile) membrane
- Calculation (= osmolality)
 (2 x Na) + K + glucose + urea)

Osmolal gap

Osmolar gap

Difference between the measured osmolality and the calculated osmolality

 \star Measured osmolality is higher than calculated o.

Difference > 10 mmol/kg

•Absolute value x change of osmolality

- Osmotic difference between ICF and ECF
 Osmosis (transfer of water, not ions)
- Rapid changes of effective osmolality
 *Rapid transfer of the water to (from) the cells
- Optimal osmolality changes during treatment of hyper (hypo) osmolality
 - 1 3 mosm/hr.

•Hyperosmolality

Causes

- Water deficit
 - ★Vomiting, diarrhea, fever, burns, uncontrolled DM
- Excess of solutes, retention/supply Na+
 - ★Acute catabolism, DM decomp, alkohol
- Sings, symptoms (volume deficit)
 - Acute weight loss, decreased skin turgor, oliguria, concentrated urine, rapid pulse, decreased BP, sensations of thirst
- Labs
 - Increased HCT, TP, osmolality (serum, urine), decreased urine volume

•Hyperosmolality

- Intervention = hydration
 - 1. Isotonic solution
 - ▶ 2. Hypotonic solution ?
- Osmolality changes during treatment should be gradual
 - 1 3 mosm/hod.
- Risk of rapid changes (rapid treatment of hyperosmolality)
 - Brain oedema !

•Hypoosmolality

Causes

Excess of water (water retention)

★Hypersecretion ADH (brain injury)

- Loss of Na+, chronic catabolism, protein malnutrition
- Sings, symptoms
 - Oedema, dyspnoea, mental status changes, cramps, cephalea,..

• Labs

Decreased HCT, TP, osmolality (serum, urine)

Hypoosmolality

Intervention

- ▶ 1. Isotonic solution
- ▶ 2. Hypertonic solution ?

Osmolality changes during treatment

1 - 3 mosm/hod.

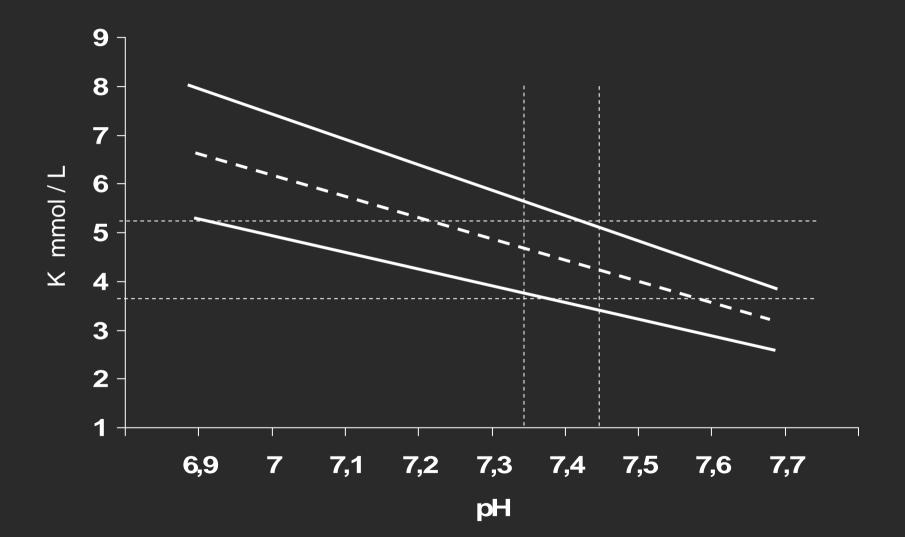
•Urine osmolality

- 50 1400 mosm/kg H₂O
 In elderly: max. 800 mosm/kg H₂0
- Depends on secretion of ADH

•lons in ECF and ICF

ECF (blood) mmol/L	ICF (cells) mmol/L
140	10
102	8
4,0	155
2,2	0,001
1,0	15
1,0	65
	140 102 4,0 2,2 1,0

•Cations and anions in blood (el.charge)


kations	anions	
Na: 140	CI: 102	
	HCO ₃ : 24	
4 1 2,5	Prot: 17	
K Mg Ca	RA: 8	

0

•K⁺ - potassium

 Physiological concentration ▶ 3,5 - 5,1 mmol/L Major cation in ICF • Why examinate K⁺? ABB Neuromuscular excitation \star Cardiac and neuromuscular function ★Influences nerve impulse conduction • Evaluation of the kalemia Connection to pH !

•Relationship between K a pH

•Hyperkalaemia - causes

- Shift K⁺ (from ICF to ECF)
 - Acidosis, hypoxemia, haemolysis, catabolism
- Excessive K intake
 - In renal failure
- Insufficient excretion by kidney
 - Renal failure, lack of of adrenal corticoids, drugs (spironolacton)
- Critical values
 - ►> 6,5 mmol/L
- MAC is accompanied by hyperkalaemia

• Hyperkalaemia - signs, symptoms

• Signs, symptoms

- Cardiac arrhythmias (bradycardia)
- ► ECG

★Tall T, low P, a-v block, wide QRS complex

Muscle weakness, paralysis, paraesthaesia of tongue, face, hands, and feet, cramping

• Therapy

- Acidosis causal treatment
- 10 20% G + insulin
- Diuretics, Ion exchanger (resonium)
- Hemodialysis

Hypokalaemia - causes

- Shift K+ (from ECF to ICF)
 Alcalosis, anabolism
 Excessive K loss
 Renal diuretics
 Gastrointestinal diarrhea
 - Drugs large doses of adrenal corticoids
- MAL is accompanied by hypokalemia

• Hypokalaemia - signs, symptoms

- Signs, symptoms
 - Muscle weakness, paralytic ileus
 - Cardiovascular: BP, possible cardiac arrest
 - EKG changes: decrease T wave, U wave
 - Mental depression and confusion
- Therapy:
 - Therapy of alkalosis
 - Replacement of K

★Oral, Parenteral (KCl 7,5 % = hypertonic solution !)

•Na+ (sodium): 135-145 mmol/L

Significance

- Major cation in ECF
- One of main factors in determining ECF volume
- Helps maintain acid-base balance
- Regulates voltage of action potential

Normal concentration of Na

- Physiological conditon
- Loss of isotonic fluid
- Excess of isotonic fluid

•Hypernatraemia

Causes

- Excess of Na gain or loss of water
- Use of large doses of adrenal corticoids
- Critical value: > 155 mmol/l
- Risk
 - If hypovolemia present prerenal failure
 - If hyperhydration heart failure

•Hypernatraemia - symptoms

- Early
 - Generalized muscle weakness
- Moderate
 - Confusion, thirst
- Late
 - oedema, restlessness, thirst, hyperreflexia, muscle twitching, irritability, possible coma
- Severe
 - Brain damage, hypertension, tachycardia

•Hypernatraemia - therapy

- Therapy should be gradual
 - Changes osmolality
 - Fast therapy = risk of brain oedema !!
- When Na > 155 mmol/l start with isotonic saline
- Gradual lowering with hypotonic solution of NaCI
- Decrease of natraemia: no more than 2 mmol/L/hr !

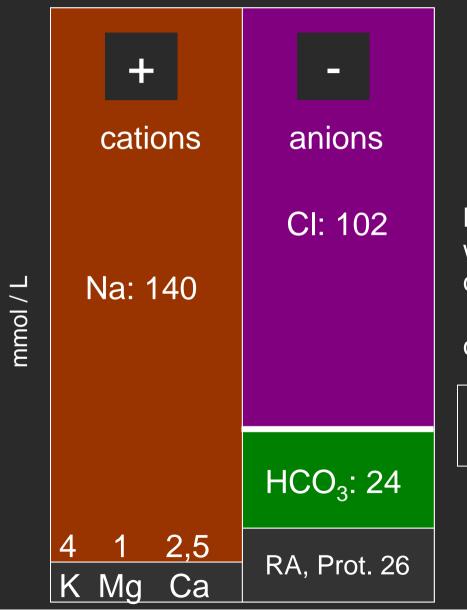
•Hyponatraemia - causes, risks

- Excess Na loss or water gain
- Hepatic cirrhosis, congestive heart failure, deficit of suprarenal corticoids
- The major risks
 - Oedema (lungs)
 - Hyponatraemic encephalopathy !
 Intracerebral osmotic fluid shifts
 Intracerebral vasoconstriction

•Hyponatraemia - therapy

- Therapy
 - 0.9% solution NaCl (3% solution NaCl ?)
- Hyponatraemia must be corrected slowly (risk of the development of central pontine myelinolysis).
- Rapid correction of hypoNa is the most common cause of that potentially devastating disorder.
- Serum sodium should not be allowed to rise by more than 8 mmol/l over 24 hours (i.e. 0.33 mmol/l/h

Chronic hyponatraemia


• Chronic ill

- Hypoproteinaemia, katabolism
- Shift sensitivity of osmoreceptors
- Na+ levels drop gradually over months
- Chronic hypoNa is often called "asymptomatic hypoNa"
- Therapy?
 - Try to increase albumin level
 - Try to induce anabolism

•Chloride: 98 - 107 mmol/L

- Major anion in ECF
- Why examinate Cl⁻?
 ABB
 Acidosis, alkalosis
 - Balance of fluid (hydration)

• The law of electroneutrality: the sum of positive and negative charges must be equal

HCO₃ is anion, which can adapt its concentration rapidly to the changing conditions

•Hyperchloraemia

Causes

Diarrhea, kidney diseases (CRF)

Excessive intake CI

Hyperchloraemia is accompanied by acidosis

• Therapy

- Correcting the underlying diseases
- Loop diuretics

•Hypochloraemia

• Causes

- Heavy vomiting, (sweating)
- Adrenal gland insufficiency
- Loop diuretics
- Hypochloraemia is accompanied by alkalosis

• Therapy

▶ NaCl, KCl, Arginin-Cl, NH₄Cl

Saline ("0,9 % solution NaCl, 300 mOsm/l)

• Saline acidify body fluids !

•Phosphorus - P: 0,9 – 1,5 mmol/L

- Intracellular mineral
- Inverse relationship to Ca
- Significance
 - Tissue oxygenation, normal CNS function
 - Movement of glucose into cells
 - Maintenance of acid-base balance
 - Enzymes, storage of energy (ATP ADP),....
 - Bone mass

Supply P in bone: > 20 000 mmol

Hypophosphataemia

Causes

- Malnutrition
- Hyperparathyroidism
- Disorders causing hypercalcemia
- Signs/Symptoms
 - Muscle fatigue, weakness, paresis
 - Disorientation, seizures, coma
 - ▶ Haemolysis
- Therapy
 - Supplementation of P

•Hyperphosphataemia

Causes

- Chronic renal failure (most common)
- Hypoparathyroidism
- Severe catabolic states
- Conditions causing hypocalcemia
- Signs/Symptoms
 - Muscle cramping and weakness
 - ↑ HR, diarrhea, nausea
 - Calcifications

•Hyperphosphataemia

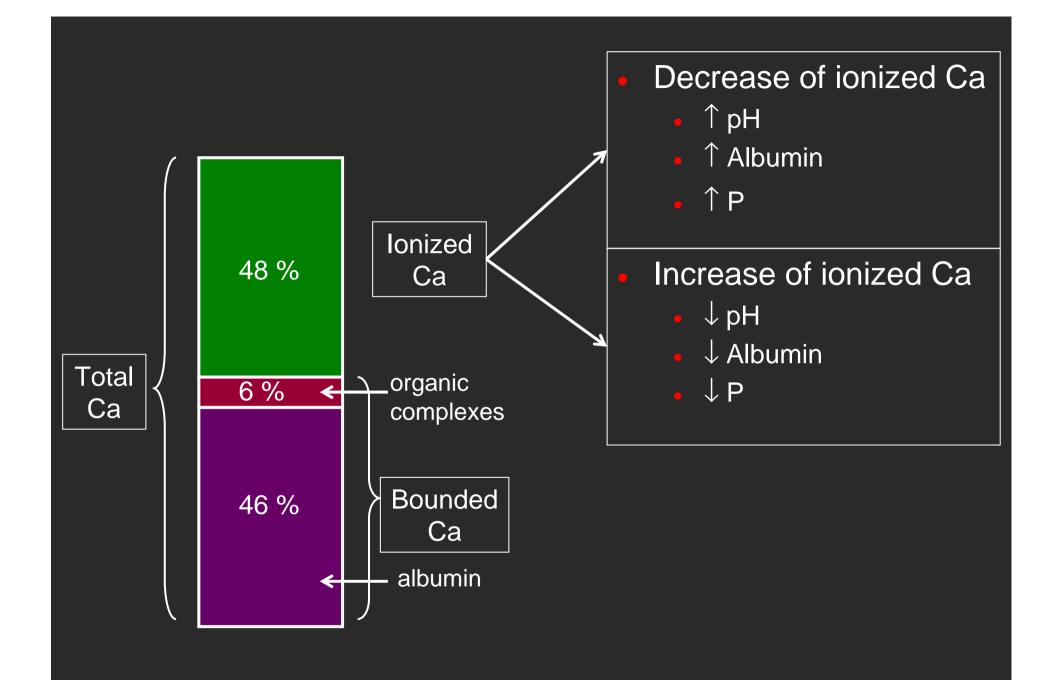
• Treatment

- Treat cause (if possible)
- Restrict phosphate-containing foods
- Administer phosphate-binding agents
 ★CRF CaCO₃
- Diuretics

•Calcium: 2,1-2,5 mmol/l

• Extracellular compartment

Blood coagulation, neuromuscular contraction, enzymatic activity


Distribution

- Bone (99 %), ECF (1 %)
- ► ECF

★ Protein-bound

★Complexes with anions

★ Ionized - neuromuscular activity

Calcium homeostasis

- Parathyrin (PTH, parathyroid hormone)
- Calcitonin (thyreocalcitonin)
- Calcitriol

•Hypercalcaemia

Causes

Mobilization of Ca from bone
 Malignancy, hyperparathyroidism, immobilization
 Thiazide diuretics, hyperfunction of thyroid gland
 Excessive ingestion of Ca and vit. D

•Hypercalcaemia

- Signs/Symptoms
 - Anorexia, constipation
 - Generalized muscle weakness, lethargy, ataxia
 - Depression, fatigue, confusion, coma
 - Rhythm disorders and heart block
 - Polyuria & predisposes to renal calculi

•Hypercalcaemia

Treatment

- Infusion of saline (0,9% NaCl)
 Loop diuretics (furosemid)
- Corticosteroids
- Bifosfonates and/or calcitonin
- Treatment of underlying diseases

•Hypocalcaemia

Causes

- Depressed function of parathyroid gland
 Surgical removal of parathyroid gland
- Hypomagnesemia
- Hyperphosphatemia
- Administration of large quantities of stored blood (preserved with citrate)
- Renal insufficiency
- Lack of vitamin D

•Hypocalcaemia

- Signs/Symptoms
 - Abdominal and/or extremity cramping
 - Tetany; hyperactive reflexes
 - Irritability, reduced cognitive ability, seizures
 - Prolonged QT on ECG, hypotension, decreased myocardial contractility
 - Abnormal clotting

•Hypocalcaemia

• Treatment

- Treatment of underlying diseases
- High calcium diet or oral calcium salts
- ▶ i.v. 10% calcium gluconate
- Vitamin D therapy

•Magnesium: 0,7-1,1 mmol/l

- Intracellular compartment
 - Ensures K/Na transport across cell membrane
 - Carbohydrate and protein metabolism
 - Nerve cell conduction, neuromuscular activity
 - Blood clotting, parathormone secretion
 - Urine defend concrements formation
 - •

• Distribution

Bone (60 %), ICF (38 %), ECF (2 %)
 ★ECF - protein-bound, ionized Mg²⁺

•Hypermagnesaemia

• Causes

- ▶ RF, muscle necrosis
- Signs and symptoms
 - Hypotension, weakness, respiratory depression
 - ECG bradycardia, tall T waves, a-v block
 - > 6 mmol/l cardiac arrest, apnoea
- Therapy
 - Calcium chloride or gluconate i.v. for acute symptoms
 - Diuretics, G + inzulin
 - ► HD

•Hypomagnesaemia

• Causes

Malabsorption, starvation, acute pancreatitis, alcoholism, diarrhea, diuretics therapy

Signs and symptoms

- Tremor, tetany, paraesthaesia of feet and legs, convulsions, personality changes with agitation
- ECG: ventricular tachycardia, fibrillation
- Th
 - ▶ MgSO₄ i.m., slowly i.v.