Citric acid cycle Synthesis of heme. Hemoproteins

© Department of Biochemistry (J.D.) 2013

Three phases of nutrient catabolism

Phase	The conversions of nutrients	ATP yield	
I.	Hydrolytic cleavage of nutrients during digestion:	none	
	Starch \rightarrow maltose \rightarrow glucose		
	Proteins \rightarrow peptides \rightarrow amino acids		
	Lipids \rightarrow fatty acids		
II.	Intracellular catabolism of nutrients:	small	
	Glc, FA, AA $\rightarrow \rightarrow \rightarrow$ pyruvate \rightarrow acetyl-CoA		
	Production of ATP in glycolysis (2 ATP/Glc)		
	Production of reduced cofactors (NADH+H ⁺ , FADH ₂)		
III.	Citrate cycle: acetyl-CoA \rightarrow 2 CO ₂ + red. cofactors + ATP		
	Respiratory chain: oxidation of reduced cofactors	the biggest	
	Aerobic phosphorylation: synthesis of ATP from $ADP + P_i$		

Sources of acetyl-CoA

- oxidative decarboxylation of pyruvate (from glucose and 6 AA)
- β-oxidation of fatty acids
- catabolism of some amino acids (Thr, Trp, Lys, Leu, Ile)
- ketone bodies utilization in extrahepatal tissues:

acetoacetate \rightarrow acetoacetyl-CoA \rightarrow 2 acetyl-CoA

• catabolism of ethanol \rightarrow acetaldehyde \rightarrow acetate \rightarrow acetyl-CoA

Compare different ways of pyruvate decarboxylation

Oxidative decarboxylation of pyruvate is catalyzed by pyruvate dehydrogenase complex: three enzymes and five cofactors

- 1. thiamin diphosphate (TDP)
- 2. lipoate
- 3. coenzyme A
- 4. FAD
- 5. NAD^+

(2) Transfer of acetyl to lipoate is redox reaction

- hydroxyethyl group is dehydrogenated to thioester during transfer
- one H atom reduces sulfur atom of lipoate to -SH group
- the second H atom goes back to TDP

(3) Transfer of acetyl to coenzyme A

(4) Transfer of 2H to NAD⁺ via FAD

Balance reaction

 CH_3 -CO-COOH + CoA-SH + NAD⁺ \rightarrow CO₂ + CH₃-CO-S-CoA + NADH+H⁺

Pyruvate dehydrogenase is <u>allosterically</u> inhibited

by end products: acetyl-CoA + NADH

Citric acid cycle (CAC)

Krebs cycle, tricarboxylic acid cycle (TCA)

- final common pathway for oxidation of all major nutrients
- located in mitochondria, active in all cells that possess mitochondria
- acetyl-CoA from metabolism of nutrients is oxidized to two molecules of CO_2 (CH₃-CO-S-CoA + 3 H₂O \rightarrow 2 CO₂ + 8 H + CoA-SH)
- CAC products:

 $CO_2 \rightarrow expired by lungs$

four oxidative steps \rightarrow reduced cofactors \rightarrow respiratory chain

 $GTP \rightarrow ATP$

• most reactions are reversible, only <u>three</u> reactions are irreversible

(1) Oxaloacetate + Acetyl-CoA

(2a) Dehydration of citrate

citrate

cis-aconitate

Aconitase is inhibited by fluoroacetate

FCH₂COOH

reacts with oxaloacetate to give fluorocitrate

CAC is stopped

LD₅₀ for human is 1 mg/kg

rat poison

Dichapetalum cymosum (see also Med. Chem. II, p. 65)

(3) Isocitrate \rightarrow 2-oxoglutarate

Reaction type: dehydrogenation + decarboxylation Enzyme: isocitrate dehydrogenase Cofactor: NAD⁺ Note: **irreversible**

(4) 2-Oxoglutarate \rightarrow succinyl-CoA

Reaction type: oxidative decarboxylation Enzyme: 2-oxoglutarate dehydrogenase complex Cofactors: TDP, lipoate, CoA-SH, FAD, NAD⁺

Note: irreversible, similar to pyruvate dehydrogenase reaction (five coenzymes)

Reaction type: substrate phosphorylation Enzyme: succinyl-CoA synthetase (succinate thiokinase) Cofactor: coenzyme A

GTP is formed in three-step reaction

Chemical energy of macroergic succinyl-CoA

is gradually transformed into two macroergic

intermediates and finally to macroergic GTP

(Passing a hot potato)

(5a) Addition of phosphate to succinyl-CoA

HS-CoA

Θ

(5b) Phosforylation of His in the active site of enzyme

(5c) Phosforylation of GDP

Distinguish

phosphoryl

-PO₃²⁻

virtual group

⊖ О-Р-ОН 0⊖

phosphate

HPO₄²⁻ (P_i) phosphate inorganic real compound

GTP is quickly converted to ATP

nucleoside-diphosphate kinase

$GTP + ADP \implies ATP + GDP$

(6) Succinate \rightarrow fumarate

Reaction type: dehydrogenation (-CH₂-CH₂- bond) Enzyme: succinate dehydrogenase Cofactor: FAD Malonate is competitive inhibitor of succinate dehydrogenase

Reaction type: hydration Enzyme: fumarase Cofactor: none Notes: 1) addition of water on double bond is **stereospecific**

2) hydration is not redox reaction

Distinguish: hydrolysis hydration

Hydrolysis = decomposition of substrate by the action of water (typical in esters, amides, peptides, glycosides, anhydrides)

Hydration = addition of water (to unsaturated substrates)

substrate +
$$H_2O \rightarrow product$$

H OH

Compare: Hydration of fumarate *in vivo* and *in vitro*

in vivo: (enzymatic reaction):

only one enantiomer is formed (L-malate)

in vitro: formation of racemate

(8) L-malate \rightarrow oxalacetate

Reaction type: dehydrogenationEnzyme: malate dehydrogenaseCofactor: NAD+

The net equation of citrate cycle

 CH_3 -CO-S-CoA + 3NAD⁺ + FAD + 2H₂O + H⁺ + HPO₄²⁻ + $\Theta_0 - P - O - P - O - R_{ib}$

- two C atoms are completely oxidized to 2 CO₂
- 8 H atoms are released in the form of reduced cofactors
 - $(3 \text{ NADH}+\text{H}^+, 1 \text{ FADH}_2)$

The energetic yield

* new calculations: 10 ATP

Factors affecting CAC

- Energy charge of the cell:
- ATP/ADP ratio and NADH/NAD⁺ ratio
- Allosteric inhibition
- Inhibition by products
- Supply of oxygen CAC can proceed only at aerobic conditions (reduced cofactors must be reoxidized in respiratory chain)

Key enzymes for regulation of citrate cycle: irreversible reactions

Enzyme	ATP ^a	NADH ^a	Other effect
Pyruvate dehydrogenase	θ	θ	\ominus acetyl-CoA ^b
Citrate synthase	θ		\ominus citrate ^b
Isocitrate dehydrogenase	θ	θ	\oplus ADP ^c
2-OG dehydrogenase		θ	\ominus succinyl-CoA ^b

^a allosteric inhibitor – signal of high energy status of cell

^b feed-back inhibitor (inhibition by a product)

^c allosteric activator

Anaplerotic reactions of CAC

- Reactions that supply the intermediates of citrate cycle
- Carboxylation of pyruvate → oxalacetate
- (Reductive carboxylation of pyruvate \rightarrow malate)
- Transamination of aspartate \rightarrow oxaloacetate
- Catabolism of Phe + Tyr \rightarrow fumarate
- Aspartate in the synthesis of urea/purines \rightarrow fumarate
- Catabolism of Val, Ile, Met \rightarrow succinyl-CoA
- Transamination of glutamate \rightarrow 2-oxoglutarate
Carboxylation of pyruvate (biotin)

pyruvate

oxaloacetate

Reductive carboxylation of pyruvate

Reaction is more important for production of NADPH for reductive synthesis (FA, cholesterol)

Amphibolic character of CAC

Final **catabolic** pathway: oxidation of acetyl-CoA to 2 CO_2

Also other compounds, which are metabolized to CAC intermediates, can serve as substrates of the cycle CAC provides important metabolic intermediates for **anabolic** processes: gluconeogenesis, transamination

Catabolic processes - entries into the cycle glucose fatty acids pyruvate Ala, Cys, Gly, Ser, Thr, Trp acetyl-CoA Leu, lle Phe, Tyr, Lys, Trp Asp, Asn oxaloacetate CC Phe, Tyr 2-oxoglutarate Arg, Glu, Gln, His, Pro fumarate ureosynthesis purine synthesis succinyl-CoA Ile, Val, Met

Anabolic processes – intermediates for syntheses

CAC and the synthesis of lipids

CAC and transamination aspartate oxaloacetate CAC 2-oxoglutarate glutamate

CAC and vitamins				
Vitamin	Reaction in citrate cycle			
Riboflavin		V		
Niacin				
Thiamin				
Pantothenic acid				

Relationships in major metabolic pathways

Interconversions between nutrients

Interconversion	Commentary
Sugars \rightarrow lipids	very easy and quickly
Lipids 🔀 glucose	not possible, pyruvate dehydrogenase reaction is irreversible
Amino acids \rightarrow glucose	most AA are glucogenic
Glucose intermediates $\rightarrow AA$	pyruvate and CAC intermediate provide arbon skeleton for some amino acids
Amino acids \rightarrow lipids	in excess of proteins
Lipids 🗙 amino acids	pyruvate dehydrogenase reaction is irreversible ketogenic AA and most mixed AA are essential

Saccharides are the most universal nutrients – the overdose is transformed in the fat stores, carbon skelet of non-essential amino acids can originate from saccharides.

Triacylglycerols exhibit the highest **energetic yield** – but **fatty acids cannot convert into saccharides** or the skelet of amino acids.

Amino acids represent the unique source of nitrogen for proteosynthesis that serves as fuel rather when the organism is lacking in other nutrients glucogenic amino acids can convert into glucose, a overdose of diet protein may be transformes in fat stores.

The metabolism of nutrients is sophistically controlled with different mechanisms in the **well-fed state** (absorptive phase),

short fasting (post-absorptive phase), and in prolonged starvation.

It also depends on **energy expenditure** (predominantly muscular work) – either of maximal intensity (anaerobic, of short duration only) or aerobic work of much lower intensity (long duration).

The tissues differ in their enzyme equipment and metabolic pathways

Pathway	Liver	CNS	Kidneys	Muscles	Adipocyte	Ery
CAC	+	+	+	+	+	-
FA β-oxidation	++	-	+	++	-	-
FA synthesis	+++				+++	-
Ketogenesis	+	-	-	-	-	-
KB oxidation*	-	+	+	+++	+	-
Glycolysis	+	+++	+	+++	+	+++
Gluconeogenesis	+++	-	+	-	-	-

* KB = ketone bodies

Cellular compartmentation of major metabolic pathways

Nucleus	DNA replication, RNA synthesis (= DNA transcription)	
Mitochondria	oxidative decarboxylation of pyruvate, CAC, RCh, FA β -oxidation, synthesis of KB / urea / heme / Gln, AST reaction	
Rough ER	proteosynthesis on ribosomes (translation of mRNA)	
Smooth ER	synthesis of TAG / chol., FA desaturation, hydroxylations of xenobiotics	
Lysosomes	non-specific hydrolysis of various substrates	
Cell membrane	transport of molecules/ions/information = transporters/channels/receptors	
Golgi apparat.	glycosylation of proteins, sorting and export of proteins	
Peroxisomes	formation and decomposition of H_2O_2 and peroxides	
Cytosol	glycolysis, gluconeogenesis, glycogen metabolism, pentose cycle, transamination, synthesis of FA / urea / urate / heme; ethanol \rightarrow acetaldehyde	

Metabolic effects of insulin

	↑ Glucose phosphorylation		↑ Glucose uptake (GLUT 4)	
	↑ Glycolysis			↑ Glycolysis
	↓ Gluconeogenesis			↑ Pentose phosphate pathway
Liver	↑ Synthesis of glycogen		Adipose tissue	\uparrow Ox. decarboxylation of pyruvate
	↓ Glycogenolysis			↑ Hydrolysis of TG in lipoproteins
	\uparrow Synthesis of fatty acids		↑ Synthesis of TG	
	\uparrow Pentose phosphate cycle			↓ Lipolysis

	↑ Glucose uptake (GLUT 4)			
	↑ Glycolysis			
Muscle	↑ Synthesis of glycogen			
	↓ Glycogenolysis			
	↑ Synthesis of proteins			

Metabolic effects of glucagon [not on muscles]

	↓ Glycolysis			
	↑ Gluconeogenesis			
T :	\downarrow Synthesis of glycogen			
Liver	↑ Glycogenolysis			
	\downarrow Synthesis of fatty acids			
	↑ Oxidation of fatty acids			
Adipocytes	↑ Lipolysis (HSL, hormone sensitive lipase)			

Biosynthesis of heme

 \sim

Hemoproteins

Heme

Prostetic group of many proteins

(hemoglobin, myoglobin, cytochromes)

Synthesis in the body:

70-80 % in erythroid cells in bone marow - hemoglobin

15 % liver – cytochroms P450 and other hemoproteins

Heme consists of porphyrin ring coordinated with iron cation

Biosynthesis of heme

- initial compound for synthesis is succinyl-CoA (intermediate of CAC)
- source of nitrogen is glycine
- reactions are located in mitochondria and cytosol
- regulation: ALA-synthase

Synthesis of δ -aminolevulinate (ALA) mitochondria CH₂-COOH $HOOC-CH_2-CH_2$ NH₂ CoA glycin succinyl-CoA pyridoxalphosphate ALA-synthase is cofactor HS-CoA HOOC-CH₂-CH₂ HOOC-CH₂-CH₂-- CO₂ CH₂ COOH CH δ -aminolevulinate NH₂ 2-amino-3-oxoadipate NH₂

(5-amino-4-oxobutanoic acid)

ALA-synthase is the rate-controlling enzyme of porphyrine biosynthesis

Half-life about 1 hour

ALA-synthase

- is inhibited by heme (allosteric inhibition)
- synthesis of enzyme is repressed by heme
- is induced by some drugs (barbiturates, phenytoin, griseofulvin)
- cytochrome P-450 is needed for biotransformation of drugs/xenobiotics

Condensation to substituted pyrrole cytosol COOH COOH COOH COOH /////{xO - 2 H₂O O)))))) H — Η NH_2 NH_2 Н

δ-aminolevulinate

porphobilinogen

Condensation of porphobilinogen

Porphobilinogen

uroporphyrinogen I (minor product) Under physiological circumstances, due to the presence of a protein modifier called co-synthase, uroporphyrinogen III with an **asymmetrical** arrangement of side chains of the ring D is formed. Only traces of symmetrical uroporphyrinogen I are produced

uroporphyrinogen III (main product)

Condensation of porphobilinogen

Decarboxylation of four acetates – formation of methyl groups cytosol

coproporphyrinogen III

uroporphyrinogen III

Formation of vinyl groups from two propionates

mitochondria

protoporphyrinogen IX

coproporphyrinogen III

Formation of conjugated system

Heme is coloured chelate with Fe²⁺

protoporphyrin IX

heme

CO and bilirubin are formed by the degradation of heme

Porhyrias are caused by partial deficiency of one of the heme synthesizing enzymes

Primary (genetic)

- Defective enzyme of heme biosynthesis
- Overproduction and accumulation of intermediates (ALA, PBG)
- Porphyrinogens in skin photosensitivity

Secondary

- Inactivation of enzymes as a consequence of disease or poisoning
- Similar symptoms

Hemoproteins

Protein	Redox state of Fe	Function
Hemoglobin	Fe ²⁺	Transport of O_2 in blood
Myoglobin	Fe^{2+}	Deposit of O_2 in muscles
Catalase	$Fe^{2+} \leftrightarrows Fe^{3+}$	Decomposition of H_2O_2
Peroxidase	$Fe^{2+} \leftrightarrows Fe^{3+}$	Decomposition of peroxides
Cytochroms	$Fe^{2+} \leftrightarrows Fe^{3+}$	Components of resp. chain
Cytochrom P-450	$Fe^{2+} \leftrightarrows Fe^{3+}$	Hydroxylation
Desaturases of FA	$Fe^{2+} \leftrightarrows Fe^{3+}$	Desaturation of FA

Oxidation number of Fe in various hemes

Does not change

- Fe^{2+}
- prosthetic group for O₂ transport
- hemoglobin, myoglobin
- heme is hidden in hydrophobic pocket of globin
- oxidation of Fe²⁺ means the loss of function

Does change

- $Fe^{2+} \leftrightarrows Fe^{3+}$
- cofactor of oxidoreductases
- cytochromes, heme enzymes
- heme is relatively exposed
- reversible redox change is the primary function = the transfer of one electron

Hemoglobin and myoglobin bind O₂

Hemoglobin

- transports O₂ from lungs to tissues
- from tissues to lungs, it transports some H^+ and CO_2 (carbamino-Hb)
- tetramer \Rightarrow sigmoidal saturation curve
- two conformations: T-deoxyHb(2,3-BPG), R-oxyHb
- binding O_2 in lungs \rightarrow release of H^+
- binding H^+ in tissues \rightarrow release of O_2
- buffer system in erythrocytes (His)

Myoglobin

- muscle hemoprotein deposition (reserve) of oxygen
- monomer \Rightarrow saturation curve hyperbolic = stronger binding O_2

Quaternary structure of hemoglobin

Derivatives of hemoglobin

Carbonylhemoglobin

- CO has great affinity to Fe²⁺ in heme
- physiological level: 1 15 % from total Hb (environment, smokers etc.)

Glycated hemoglobin

- non-enzymatic reaction with free glucose, -NH₂ group of Hb (N-terminus, Lys) and aldehyde group of glucose
- physiological level: 2.8 4.0 % (from total Hb)

Methemoglobin (hemiglobin)

- oxidation of heme iron, $Fe^{2+} \rightarrow Fe^{3+}$, physiol. level: 0.5 1.5 %
- oxidation agents: nitrites, alkyl nitrites, aromatic amines, nitro compounds
- Hb mutation: hemoglobin M (HbM), the replacement of $F8^{His \rightarrow Tyr}$
- deficit of methemoglobin reductase

Language note: Methemoglobin

- it has nothing to do with methyl group !!!
- abbreviated from *metahemoglobin*
- the prefix *meta-* (from Greek) indicates change, transformation, alteration
- other examples with the prefix *meta*: metabolic (= catabolic + anabolic)

metamorphosis, metazoan ...

Linguistic note:

How to express two redox states of iron

	Fe ²⁺	Fe ³⁺
Infix	-0	-i
	hem <u>o</u> globin,	hem <u>i</u> globin = methemoglobin,
Biochemical names	ferr <u>o</u> portin,	ferr <u>i</u> tin, transferr <u>i</u> n, lactoferr <u>i</u> n,
	ferr <u>o</u> xidase	gastroferr <u>i</u> n, ferr <u>i</u> c reductase
Chemical names		
Latin	ferr <u>o</u> si chloridum	ferr <u>i</u> chloridum
Old English	ferr <u>o</u> us chloride	ferr <u>i</u> c chloride
New English	iron(II) chloride	iron(III) chloride
Heme as cofactor of oxidoreductases transfers one electron

Examples of heme enzymes

Catalase: $H_2O_2 \rightarrow \frac{1}{2}O_2 + H_2O$

Myeloperoxidase: $H_2O_2 + Cl^- + H^+ \rightarrow HClO + H_2O$

Cytochrome P450 (CYP)

- superfamily of **heme** enzymes (many isoforms)
- catalyze mainly **hydroxylation** of various substrates
- exhibits wide substrate specifity (advantage for the body)
- can be induced and inhibited by many compounds
- occurs in most tissues (except of muscles and erythrocytes)
- the highest activity in the liver (ER)

Abbreviation: P = pigment, 450 = wave length (nm) of a absorption peak after binding CO

Hydroxylation by CYP 450 occurs in endogenous and exogenous substrates

• <u>Endoplasmic reticulum</u>:

squalene, cholesterol, bile acids, calciol,

FA desaturation, prostaglandins, xenobiotics

• <u>Mitochondria</u>:

steroidal hormones

Mechanism of hydroxylation

- the formation of hydroxyl group
- <u>mono</u>oxygenase: <u>one</u> O atom from O_2 molecule is incorporated into substrate between C and H (R-H \rightarrow R-OH)
- the second O atom and 2H from NADPH+H⁺ produce water

 $R-H + O_2 + NADPH + H^+ \rightarrow R-OH + H_2O + NADP^+$ $2 e^{-} + 2 H^+$ 76

Desaturation of fatty acids H₃C COOH stearic acid Δ^9 desaturase 18:0 9-10 desaturation (humans) oleic acid 18:1 (9) H₃C COOH 12-13 desaturation (plants) linoleic acid 18:2 (9,12) COOH 77 CH_3

Desaturation of FA requires cytochrome b₅

