

General features, cofactors

© Department of Biochemistry, FM MU, 2013 (J.D.)

Literature for Biochemistry I

- Lecture files on *is.muni.cz*.
- Tomandl J., Táborská E.: *Biochemistry I Seminars*. MU, 2012
- Harvey R.A., Ferrier D.R.: *Biochemistry*. 5th ed., Lippincott Williams & Wilkins, 2011.
- Koolman J., Röhm K.H.: *Color atlas of biochemistry*, Thieme, 2013.

General features of enzymes

CAUTION: peptidyltransferase is ribozyme

 $(AK)_{n}$ -tRNA₁ + AK-tRNA₂ \xrightarrow{rRNA} tRNA₁ + $(AK)_{n+1}$ -tRNA₂

- biocatalysts
- different types of proteins / also RNA (ribozyme)
 with covalently attached prosthetic group and/or metal cation,
 oligomeric / multienzyme complexes / associated with membranes etc.
- different distribution in cell and in the body, make isoforms (isoenzymes)
- specific (towards substrate and reaction), highly effective
- work under mild conditions
- *in vivo* can be regulated in two ways (activity of enzyme, quantity of enzyme)
- *in vitro* sensitive to many factors

Enzymes are highly efficient catalysts

- decrease activation energy \Rightarrow increase the reaction rate
- much more efficient than other (inorganic) catalysts
- remain unchanged after reaction
- do not alter equilibrium constant *K*
- *in vitro* sensitive to many factors

Enzymes work under mild conditions

- narrow temperature range around **37** °C
- over 50 °C become denaturated = inactivated
- narrow pH range \Rightarrow **pH optimum**
- most intracellular enzymes have pH optima around 7
- digestion enzymes function in rather stronger acidic / alkaline environment (pepsin 1-2, trypsin ~ 8)

Dual specifity of enzymes towards:

Reaction

catalyze just

one type of reaction

Substrate

work with one substrate

(or group of similar substrates)

often stereospecific

Enzymes are stereospecific catalysts

there are two types of stereospecific conversions:

1. non-chiral substrate \rightarrow chiral product_(one enantiomer)

pyruvate \rightarrow L-lactate

fumarate \rightarrow L-malate

2. chiral substrate_(one enantiomer) \rightarrow product

L-alanine \rightarrow pyruvate (D-alanine does not react)

D-glucose $\rightarrow \rightarrow$ pyruvate (L-glucose does not react)

chiral signal molecule \rightarrow complex with receptor \rightarrow biological response

chiral $drug_{(ant)agonist} \rightarrow complex$ with receptor \rightarrow pharmacological response

Hydrogenation of pyruvate

when pyruvate is hydrogenated without enzyme (*in vitro*), reaction product is the **racemic mixture** of D-lactate and L-lactate:

in reaction catalyzed by lactate dehydrogenase (*in vivo*), pyruvate is reduced stereospecifically to L-lactate only:

Non-enzymatic hydration of fumarate

in vitro reaction proceeds to racemic D,L-malate

Enzymatic hydration of fumarate (citrate cycle)

in vivo just one enantiomer (L-malate) is produced

Hydrogenation of D-fructose in vitro gives two epimers

in vivo: enzymatic reaction gives just one product (D-glucitol)

Enzymes or receptors recognize only one enantiomer

If the reactant of enzymatic reaction is a chiral compound, only one of two enantiomers is recognized as the specific substrate.

Chiral substrates/signal molecules are bound to the stereospecific enzymes/receptors at three sites:

Enzyme nomenclature: the ending -ase

Systematic names identify the enzymes fully with the EC code number, contain information about substrate and type of reaction,

not very convenient for everyday use.

Recommended (accepted) names are shorter than systematic names,

include also some historical names (pepsin, amylase)

EC (abbr. Enzyme Commission) of International Union of Biochemistry (IUB) major class number . subclass number . sub-subclass number . enzyme serial number

http://www.chem.qmul.ac.uk/iubmb/enzyme/

Examples of enzyme names

- **Recommended name:** alcohol dehydrogenase
- Systematic name: EC 1.1.1.1 ethanol:NAD⁺-oxidoreductase
- **Reaction:** ethanol + NAD⁺ \rightarrow acetaldehyde + NADH + H⁺

Recommended name: alanine aminotransferase (ALT)
Systematic name: EC 2.6.1.2 L-alanine:2-oxoglutarate-aminotransferase
Reaction: L-alanine + 2-oxoglutarate → pyruvate + L-glutamate

Classification of enzymes: six classes according to reaction type

(each class comprises other subclasses)

Enzyme class	General scheme of reaction	
1. Oxidoreductases	$A_{red} + B_{ox} \iff A_{ox} + B_{red}$	
2. Transferases	$A-B+C \rightarrow A+C-B$	
3. Hydrolases	$A-B + H_2O \rightarrow A-H + B-OH$	
4. Lyases	A-B \leftrightarrows A + B (reverse reaction: synthases)	
5. Isomerases	A-B-C \leftrightarrows A-C-B	
6. Ligases (synthetases)	$A + B + ATP \rightarrow A-B + ADP + P_i$	

1 Oxidoreductases

catalyze the oxidation or reduction of substrate

subclasses:

- **dehydrogenases** catalyze the transfers of two H atoms
- **oxygenases** catalyze the incorporation of one/two O atoms into the substrate (monooxygenases, dioxygenases)
- **oxidases** catalyze transfers of electrons between substrates (e.g. cytochrome *c* oxidase, ferroxidase)
- **peroxidases** catalyze the decomposition of peroxides

Example: lactate + NAD⁺ \leftrightarrows pyruvate + NADH + H⁺

Recommended name: lactate dehydrogenase

Systematic name: (*S*)-lactate:NAD⁺ oxidoreductase

2 Transferases

catalyze the transfer of a group from one to another substrate

subclasses:

- aminotransferases, methyltransferases, glucosyltransferases
- **kinases** phosphorylate substrate by the transfer of phosphoryl group PO_3^{2-} from ATP (e.g. hexokinases, protein kinases)

Example: glucose + ATP → glucose 6-P + ADP Recommended name: glucokinase Systematic name: ATP:D-glucose phosphotransferase

Example: Phosphorylation of glucose

glucose

glucose 6-phosphate

3 Hydrolases

catalyze the hydrolytic splitting of esters, glycosides, amides, peptides etc. subclasses:

- esterases (lipases, phospholipases, ribonucleases, phosphatases)
- glycosidases (e.g. sucrase, maltase, lactase, amylase)
- **proteinases, peptidases** (pepsin, trypsin, cathepsins, caspases/apoptosis, dipeptidases, carboxypeptidases, aminopeptidases)
- amidases (glutaminase, asparaginase)
- **ATPases** (split anhydride bonds of ATP)

Example: glucose $6 - P + H_2O \rightarrow glucose + P_i$

Recommended name: glucose 6-phosphatase

Systematic name: glucose 6-phosphate phosphohydrolase

Example: glucose 6-phosphatase

Compare two antagonistic enzymes

Glutaminase is amidase which catalyzes the <u>deamidation</u> of glutamine

glutamine

gluta glutamate

ATPase catalyzes the exergonic hydrolysis of phosphoanhydride bond in ATP $ATP + H_2O \rightarrow ADP + P_i + energy$

Examples of lysosomal hydrolases

Hydrolase	Bond hydrolyzed
Glucosidase	glycoside
Galactosidase	glycoside
Hyaluronidase	glycoside
Arylsulfatase	sulfoester
Lysozyme	glycoside
Cathepsin	peptide
Collagenase	peptide
Elastase	peptide
Ribonuclease	phosphodiester
Lipase	ester
Phosphatase	phosphoester
Ceramidase	amide

Distinguish: lysozyme lysosome

Lysozyme is enzyme

- compound word, **lyso** (Greek *lysis*) + **zyme** (from *enzyme*)
- hydrolase, glycosidase, cleaves β -1,4-glycoside bond in bacterial heteropolysaccharides, antiseptic defense
- occurs in saliva, tears, and other body fluids

Lysosome is intracellular digestion organelle

- Greek compound word from *lysis* (to lyse) and *soma* (body)
- typical for animal cells
- acidic pH, contains many acidic hydrolases

4 Lyases

catalyze **non-hydrolytic splitting** or **forming** bonds C–C, C–O, C–N, C–S through removing or adding, respectively, a small molecule (H₂O, CO₂, NH₃)

- Some frequent recommended names:
- ammonia lyases (e.g. histidine ammonia lyase: histidine \rightarrow urocanate + NH₃)
- decarboxylases (amino acid \rightarrow amine + CO₂)
- aldolases (catalyze aldol cleavage and formation)
- (de)hydratases (e.g. carbonate dehydratase: $CO_2 + H_2O \leftrightarrows H_2CO_3$)

```
Example: fumarate + H_2O \leftrightarrows L-malate
Recommended name: fumarate hydratase
Systematic name: (S)-malate hydro-lyase (fumarate-forming)
```

5 Isomerases

catalyze intramolecular rearrangements of atoms examples:

- epimerases
- racemases
- mutases

Example: UDP-glucose \rightarrow UDP-galactose

Recommended name: UDP-glucose 4-epimerase

Systematic name: UDP-glucose 4-epimerase

catalyze the formation of high-energy bonds C–C, C–O, C–N

in the reactions coupled with **hydrolysis of ATP**

Frequent recommended names:

carboxylases

synthetases

(e.g. glutamine synthetase: glutamate + ATP + $NH_3 \rightarrow glutamine + ADP + P_i$)

Example: pyruvate + CO_2 + ATP + $H_2O \rightarrow o$ xaloacetate + ADP + P_i Recommended name: pyruvate carboxylase Systematic name: pyruvate:carbon-dioxide ligase (ADP-forming)

Three enzymes dealing with phosphate

Enzyme (Class)	Reaction scheme / Reaction type
Kinase	substrate-OH + ATP \rightarrow substrate-O-P + ADP
(Transferase)	phosphorylation = transfer of phosphoryl PO ₃ ²⁻ from ATP to substrate
Phosphatase	substrate-O-P + $H_2O \rightarrow$ substrate-OH + P_i
(Hydrolase)	the hydrolysis of phosphoester bond
Phosphorylase (Transferase)	$(glycogen)_n + P_i \rightarrow (glycogen)_{n-1} + glucose 1-P$ inosine $+ P_i \rightarrow$ hypoxanthine + ribose 1-P phosphorolysis = the splitting of glycoside bond by phosphate = transfer of glucosyl to inorganic phosphate

Distinguish:

Three types of lysis (decomposition of substrate)

Hydrolysis	the decomposition of substrate by water , frequent in intestine: sucrose + H ₂ O \rightarrow glucose + fructose (starch) _n + H ₂ O \rightarrow maltose + (starch) _{n-2}
Phosphorolysis (see previous page)	the cleavage of <i>O</i> / <i>N</i> -glycoside bond by phosphate : (glycogen) _n + P _i \rightarrow (glycogen) _{n-1} + glucose 1-P
Thiolysis	the cleavage of C-C bond by sulfur atom of coenzyme A in β -oxidation of FA or ketone bodies catabolism RCH ₂ COCH ₂ CO-SCoA + CoA-SH \rightarrow RCH ₂ CO-SCoA + CH ₃ CO-SCoA CH ₃ COCH ₂ CO-SCoA + CoA-SH \rightarrow 2 CH ₃ CO-SCoA

Cofactors of enzymes

- low-molecular non-protein compounds
- many of them are derived from B-complex vitamins
- many of them are nucleotides
- transfer 2 H or e⁻ (cooperate with oxidoreductases)
- transfer groups (cooperate with transferases)
- tightly (covalently) attached prosthetic groups
- loosely attached coenzymes (cosubstrates)

Three different components in enzyme reaction

substrate + cofactor $rate = product + cofactor_{altered}$

enzyme

- 2. cofactor
- 3. enzyme catalyzes the whole process

Notes:

- one or two substrates may be involved (dehydrogenation × transamination)
- substrate can be low / high molecular (hexokinase × protein kinase)
- some reactions proceed without cofactor (hydrolysis, isomeration)
- reaction can be reversible or irreversible (dehydrogenation × decarboxylation)

Cofactors of oxidoreductases

Oxidized form	Reduced form	The function of cofactor
NAD^+	NADH+H ⁺	NAD ⁺ acceptor of 2H
NADP ⁺	NADPH+H ⁺	NADPH+H ⁺ donor of 2H
FAD	FADH ₂	FAD acceptor of 2H
Dihydrobiopterin (BH ₂)	tetrahydrobiopterin (BH ₄)	BH ₄ donor of 2H
Molybdopterin _{oxid}	molybdopterin _{red}	electron transfer
Lipoate (-S-S-)	dihydrolipoate (2 -SH)	antioxidant / transfer of acyl
Ubiquinone (Q)	ubiquinol (QH ₂)	transfer of 2 electrons + 2 H^+
Heme-Fe ³⁺	heme-Fe ²⁺	transfer of 1 electron
Non-heme-S-Fe ³⁺	non-heme-S-Fe ²⁺	transfer of 1 electron
Glutathione _{oxid} (G-S-S-G)	glutathione _{red} (GSH)	2 GSH donor of 2H

NAD⁺ is the cofactor of dehydrogenases, derivative of nicotinamide (vitamin)

- NAD⁺ is oxidant takes off **2 H** from substrate
- one H adds as hydride ion (H⁻)

into *para*-position of pyridinium cation of NAD⁺

- $NAD^+ + H^- = NADH =$ equivalent of two electrons
- the second H is released as **proton (H⁺)** and

binds to enzyme molecule

NAD⁺ (<u>n</u>icotinamide <u>a</u>denine <u>d</u>inucleotide)

Redox pair of cofactor

- oxidized form NAD⁺
- aromatic ring
- tetravalent nitrogen
- positive charge on nitrogen

reduced form NADH aromaticity <u>totally</u> disturbed trivalent nitrogen electroneutral species high-energy compound
Dehydrogenation by NAD⁺

- typical substrate groups:
- primary alcohol -CH₂-OH
- secondary alcohol >CH-OH
- secondary amine >CH-NH₂
- **double bond** (C=O, C=N) is produced

NAD⁺ dehydrogenations form a double bond

Substrate	Product	
primary alcohol	aldehyde	
secondary alcohol	ketone	
aldehyde hydrate	carboxylic acid	compare
hemiacetal	ester	Med. Chem. II
cyclic hemiacetal	lactone	Appendix 3
hydroxy acid	oxo acid	
amino acid	imino acid	

Dehydrogenation of ethanol (alcohol dehydrogenase)

Dehydrogenation of glutamate (glutamate dehydrogenase)

glutamate

2-imino glutarate

NAD⁺-dependent enzymes are called pyridine dehydrogenases

• Citrate cycle

isocitrate dehydrogenase 2-oxoglutarate dehydrogenase malate dehydrogenase

• Glycolysis

glyceraldehyde 3-P dehydrogenase lactate dehydrogenase

• Oxidation of ethanol

alcohol dehydrogenase acetaldehyde dehydrogenase

Reduced cofactor NADPH+H⁺ is hydrogenation agent

- donor of 2 H in hydrogenations
- cofactor of reducing syntheses (FA, cholesterol)
- regeneration of glutathione (GSH) in erythrocytes
- cofactor of hydroxylation reactions:

cholesterol $\rightarrow \rightarrow$ bile acids

```
calciol \rightarrow \rightarrow calcitriol
```

xenobiotic \rightarrow hydroxylated xenobiotic

• general scheme of hydroxylation:

$R-H + O_2 + NADPH + H^+ \rightarrow R-OH + H_2O + NADP^+$

FAD is cofactor of flavin dehydrogenases, derivative of riboflavin (vitamin B₂)

- <u>flavin a</u>denine <u>d</u>inucleotide
- dehydrogenation of -CH₂-CH₂- group
- <u>two</u> H atoms are attached to <u>two</u> nitrogens of riboflavin (N-1 and N-10)
- FAD + 2H \rightarrow FADH₂

FAD (flavin adenine dinucleotide)

dimethylisoalloxazine

Redox pair of cofactor

oxidized form FAD

aromatic system

electroneutral species

reduced form FADH₂

aromaticity **partially** disturbed

electroneutral species

high-energy compound

Dehydrogenation of succinate to fumarate (flavin dehydrogenase)

Tetrahydrobiopterin (BH₄) is a cofactor of hydroxylations

tetrahydropteridin

- made in the body from GTP
- donor of 2H
- oxidized to dihydrobiopterin (BH₂)

Redox pair of cofactor

Hydroxylation of phenylalanine

Coenzyme Q (ubiquinone)

- derivative of 1,4-benzoquinone
- cyclic diketone, not aromatic
- component of respiratory chain
- gradually accepts electron and proton (2x)
- reduced to semiubiquinone and ubiquinol

Reversible reduction of ubiquinone

 $Q \leftrightarrows \cdot QH \leftrightarrows QH_2$

electron (e⁻) and proton (H⁺) have different origin: electron comes from reduced cofactors, H⁺ from matrix of mitochondria

 $R = long polyisoprenoid chain \Rightarrow lipophilic character$

Heme of various cytochromes

- transfers just 1 electron
- cytochromes are hemoproteins
- components of respiratory chain or other heme enzymes (cyt P-450)
- reversible redox reaction: $Fe^{2+} \leftrightarrows Fe^{3+}$

Non-heme iron (Fe₂S₂ cluster) transfers electron in R.CH.

oxidized state

reduced state

just one iron cation changes oxidation number

Molybdopterin (formula in Seminars)

Xanthine oxidase catalyzes the oxygenation of purine bases (catabolism)

hypoxanthine \longrightarrow xanthine \longrightarrow uric acid

side product: H_2O_2

Molybdopterin

cysteine

Sulfite oxidase: sulfate is catabolite from cysteine

Redox pair lipoate/dihydrolipoate is antioxidant system. It is also involved in the acyl transfer (see later)

Glutathione (GSH)

- tripeptide
- γ-glutamyl-cysteinyl-glycine
- cofactor of glutathione peroxidase (contains selenocysteine)
- reduces H_2O_2 to water
- 2 G-SH + H-O-O-H \rightarrow G-S-S-G + 2 H₂O

Remember:

The -SH compounds have generally reducing properties.

Dehydrogenation of <u>two</u> **GSH molecules**

Vitamins and cofactors of transferases

Vitamin	Cofactor	Transferred group
Pyridoxin	pyridoxal phosphate	-NH ₂ (transamination)
(Made in body)	ATP	-PO ₃ ²⁻ (phosphoryl)
(Made in body)	PAPS	-SO ₃ ²⁻
Biotin	carboxybiotin	CO ₂
Pantothenic acid	CoA-SH	acyl
(Made in body)	dihydrolipoate	acyl
(Methionine)	SAM	-CH ₃
Folate	tetrahydrofolate	C ₁ groups
Cyanocobalamin	methylcobalamin	-CH ₃
Thiamin	thiamin diphosphate	residue of oxo acid

Pyridoxal phosphate is the cofactor of transamination and decarboxylation of AA

ATP is the cofactor of kinases (phosphorylation agent)

Phosphorylation of substrate

PAPS is sulfation agent

- 3'-phosfoadenosine-5'-phosphosulfate
- mixed anhydride of H_2SO_4 and H_3PO_4
- esterification of hydroxyl groups by sulfuric acid = sulfation
- sulfated sphingoglycolipids
- sulfated glycosaminoglycans (heparin, chondroitin sulfate, keratan sulfate)

Carboxybiotin

- cofactor of carboxylation reactions
- carboxylation of biotin needs ATP

Carboxybiotin is the cofactor of carboxylation reactions

Distinguish: Decarboxylation *vs.* **Carboxylation**

Cofactor	Decarboxylation (does not require energy)	Y	
Thiamin-diP	pyruvate \rightarrow acetyl-CoA + CO ₂ 2-oxoglutarate \rightarrow succinyl-CoA + CO ₂		
Pyridoxal-P	amino acid \rightarrow amine + CO ₂		
None	acetoacetate \rightarrow acetone + CO ₂ (non-enzymatic, spontaneous)		
Cofactor	Carboxylation (requires energy)		
Biotin	pyruvate + CO_2 + ATP \rightarrow oxaloacetate acetyl-CoA + CO_2 + ATP \rightarrow malonyl-CoA propionyl-CoA + CO_2 + ATP \rightarrow methylmalonyl-CoA \rightarrow succiny carboxylations (ATP) in the catabolism of Val, Leu, Ile	l-CoA	
Phylloquinone (vitamin K)	protein-glutamate + O_2 + vit K_{red} + CO_2 \rightarrow protein- γ -carboxyglutamate posttranslational carboxylation of glutamate \rightarrow hemostasis		
None	Hb-NH ₂ + CO ₂ \rightarrow Hb-NH-COOH (unstable Hb-carbamate, spontaneous)		

Coenzyme A (CoA-SH)

- transfers acyl
- attached to sulfur atom
- thioester bond
- acyl-CoA is activated acyl
- e.g. acetyl-CoA

Coenzyme A

Lipoate (lipoamide)

part of the 2-oxo acid dehydrogenase complex (see the following lectures) it is oxidant of a group carried by thiamine diphosphate (TDP), binds the resulting acyl as thioester and transfers the acyl to coenzyme A:

S-Adenosylmethionine (SAM)

- ,,active methyl", trivalent sulfur \Rightarrow sulfonium cation
- cofactor of methylation reactions:

ethanolamine \rightarrow choline (3 methylation) guanidine acetate \rightarrow creatine

- noradrenaline \rightarrow adrenaline and many others
- side product is **homocysteine**
- remethylation of homocysteine needs methyl-FH₄ + B₁₂ cofactor (see Seminars)

S-Adenosylmethionine (SAM)

Folic acid is vitamin. In the body, it is hydrogenated to 5,6,7,8-tetrahydrofolate.

Tetrahydrofolate (FH₄) is cofactor for the transfer of C₁ groups

C₁ Groups transferred by **FH**₄

Seminars, p. 26

Oxidation number of C	Formula	Name	Metabolic Origin / Comment
-III	-CH ₃	methyl	reduction of methylene- FH_4 (from serine, glycine) methyl- FH_4 cooperates with B_{12} cofactor in methylation
-II	-CH ₂ -	methylene	catabolism of serine, glycine used in synthesis of $dTMP \rightarrow DNA$
-I	-CH=	methenyl	deamination of formimino- FH_4 (from histidine) used in synthesis of purine bases
+I	-CH=O	formyl	catabolism of tryptophan \rightarrow formiate \rightarrow formyl used in synthesis of purine bases
+I	-CH=NH	formimino	catabolism of histidine 73

B₁₂ vitamin is <u>cyano</u> or <u>hydroxo</u>cobalamin

R = CN or OH corrin cycle

hydroxocobalamin is used in the treatment of cyanide poisoning, it binds cyanide ions to nontoxic cyanocobalamin **B**₁₂ cofactor is <u>methyl</u> or <u>deoxyadenosyl</u>cobalamin,

it is needed for <u>two</u> reactions in the body

 $\frac{FH_4/B_{12}}{homocysteine} \rightarrow methionine$

1.

methylation of homocysteine (regeneration of methionine)

2. homocysteine $\rightarrow \rightarrow$ propionyl-CoA $\rightarrow \rightarrow$ succinyl-CoA

Compare: Four different cofactors of methylations

Cofactor	Origin of methyl	Examples of methylation reactions
SAM	methionine	ethanolamine \rightarrow choline guanidine acetate \rightarrow creatine noradrenaline \rightarrow adrenaline methylation of DNA (regulation of gene expression) methylation of bases in tRNA / mRNA (guanine-N ⁷ = cap) inactivation of catecholamines (COMT): • dopamine \rightarrow methoxytyramine • noradrenaline \rightarrow normetanephrine • adrenaline \rightarrow metanephrine methylation of xenobiotics (II. phase - conjugation)
methyl-FH ₄	methylene-FH ₄	homocysteine \rightarrow methionine
methyl-B ₁₂	methyl-FH ₄	
methylene-FH ₄	serine, glycine	$dUMP \rightarrow dTMP$ $dUMP + methylene-H_4F \rightarrow dTMP + H_2F$ (thymidylate synthase)

SAM = S-adenosylmethionine, FH_4 = tetrahydrofolate, COMT = catechol O-methyltransferase

Thiamin is vitamin **B**₁ Thiamin diphosphate (TDP) is cofactor

Oxidative decarboxylation of some 2-oxo acids

- pyruvate \rightarrow acetyl-CoA
- 2-oxoglutarate \rightarrow succinyl-CoA (citrate cycle)
- 2-oxo acids in the catabolism of branched amino acids (Val, Leu, Ile)

Transketolase reactions in pentose cycle

- ribose-5-P + xylulose-5-P \leftrightarrows glyceraldehyde-3-P + sedoheptulose-7-P
- xylulose-5-P + erythrose-4-P \leftrightarrows fructose-6-P + glyceraldehyde-3-P

Thiamin diphosphate (TDP) is cofactor in the oxidative decarboxylation of pyruvate

attachment of pyruvate and its decarboxylation

$$\begin{array}{c} \text{TDP} \\ \text{glucose} \rightarrow \text{pyruvate} \rightarrow \text{acetyl-CoA} \\ \downarrow \\ \text{CAC} \\ 78 \end{array}$$

In human body, a number of <u>non-enzymatic</u> reactions proceeds

- decarboxylation of acetoacetate \rightarrow acetone
- catabolism of creatine \rightarrow creatinine (dehydration + cyclization)
- glycation / carbamylation / nitrosylation / nitration of proteins
- the reactions of reactive oxygen species (e.g. lipoperoxidation)
- spontaneous oxidation of hemoproteins (hemoglobin \rightarrow methemoglobin)
- spontaneous oxidation of urobilinogens to urobilins (large intestine)
- condensation of amines with carbonyl compounds to heterocyclic derivatives dopamine + pyruvate → salsolinol (neurotoxin ?) tryptamine + pyruvate → harmane

dopamine + dihydroxyphenylacetaldehyde \rightarrow tetrahydropapaveroline

- binding ligands to proteins:
 bilirubin + albumin → bilirubin-albumin complex
 CO + hemoglobin → carbonylhemoglobin
- the interactions of macromolecules:
 antigen + antibody → immuno complex