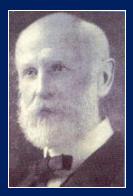
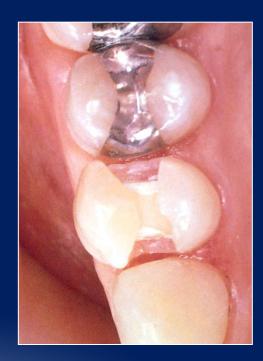
BIOACTIVE MATERIALS

ACTUAL TRENDS IN RESTORATIVE DENTISTRY AND ENDODONTICS

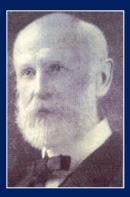
• Minimal intervention

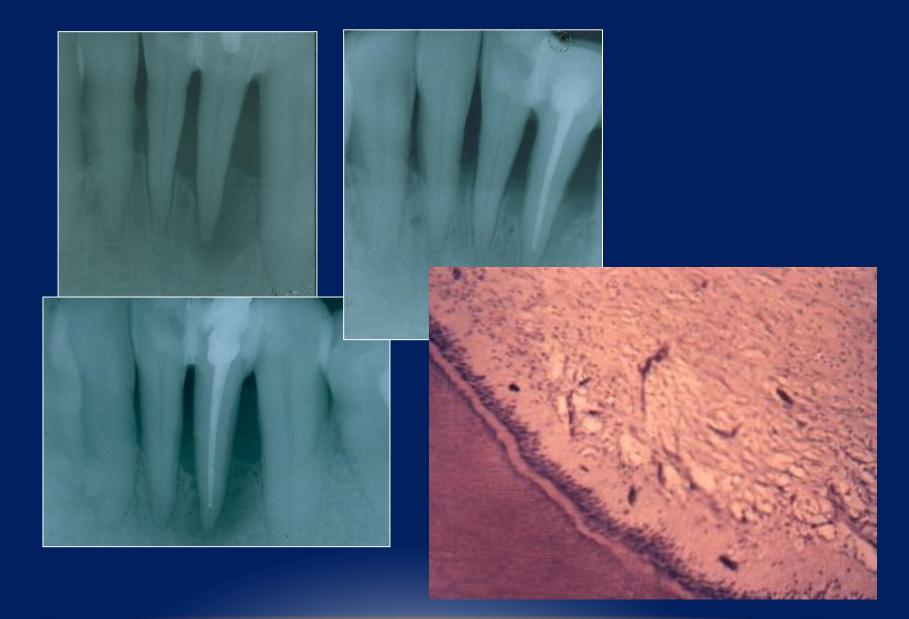

 Improvement of the healing potential of dental pulp and supportive tissues

PRIMUM NON NOCERE!

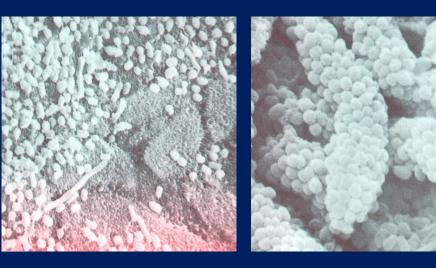

Minimal intervention

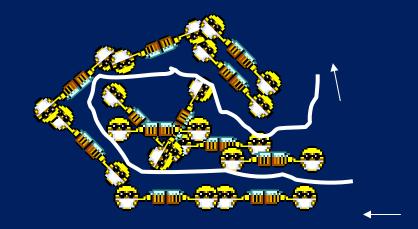
Non invasive
 Approach
 Minimally invasive


EXTENTION FOR PREVENTION !

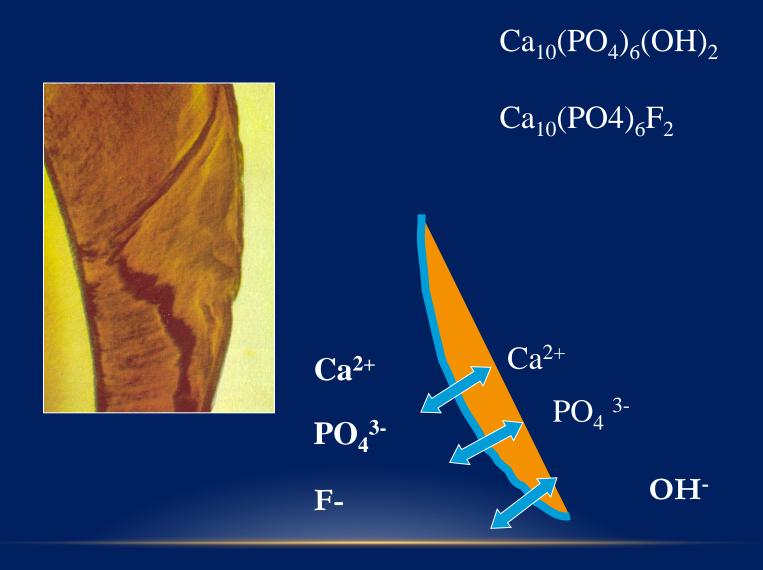

PREVENTION OF EXTENTION !

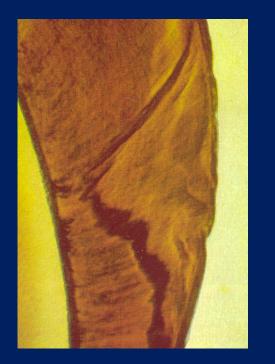
"If we recognized real reasons of dental caries we would be able to heal the caries lesion." (G.V. Black 1900)

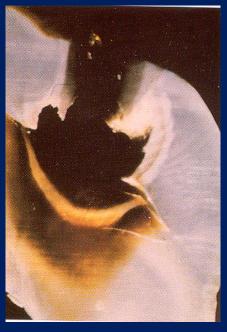

- □ Etiology and pathogenesis of dental caries
- Study of healing possibilities of dental pulp and periodontal tisues
- □ Study of mechanical resistance of teeth
- Diagnosis
- Preparation techniques
- Filling materials


Study of healing possibilities of dental pulp and periodontal tisues

Etiology and pathogenesis of dental caries





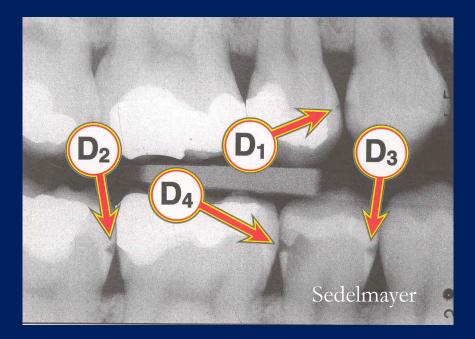


Importance of oral hygiene

Decrease of cariogenic potential of dental biofilm

Is there any possibility to remineralize dentin?

How much of carious dentin should be removed?


□ Study of the mechanical resistance of teeth

REDUCTION OF THE RESISTANCE

Ferrari M, Scotti R. Fiber posts. Characteristics and clinical applications. Milano: Masson,2002.c

□ Diagnosis

RTG vyšetření – Bite Wing

DIAGNOSIS

ECM Electrical Caries Monitor

(Verdonschot 1992)

FOTI Fibre Optic Trans Illumination

(Stephen et al. 1987)

> QLF Quantitative Light-induced Fluorescence

(Hail et al. 1987)

> IRLF Infra Red Laser Fluorescence

(Lussi et al. 1999)

Peters MC, Mc Lean ME: Minimally invasive operative care I. Minimal Intervention and Concepts: J Adhes Dent 2001; 3:5–16.

Preparation techniques

□Filling materials

IDEAL FILLNIG MATERIAL – DOES IT EXIST? It should be

easy to handle multi-purpose material one increment technique no shrinkage tooth colored biocompatible & bioactive resistant tolerant

AMALGAM

- No aesthetic
- No connection to hard dental tissue
- Thermal conductivity
- Big lost of hard dental tissue due to proper preparation

- Toxicological aspects

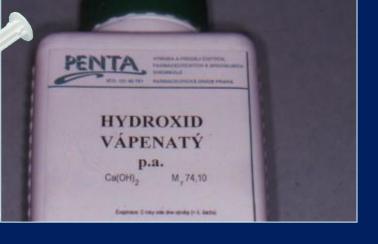
COMPOSITE

- Aesthetic
- Good connection to enamel and dentin
- No cariostatic potential
- Exacting technology dry operating field

GLASSIONOMERS

- Good connection to hard dental tissues esp. to enamel (chemical binding)
- Favourable thermal expansion
- Cariostatic effect (releasing of fluoride ions), remineralization of dentin (acidoresistant barrier)
- Not strong enough (abrasion), acidic
- Not so aesthetic as composite materials

None of filling contemporary filling does improve the healing potential of dental pulp and/or solve endodontics problems!


CALCIUM HYDROXIDE

- Pulp capping
- Pulpotomy
- Temporary root canal filling

Apenie Plus

• Apexification

WE NEED A NEW MATERIAL !!!!

The main criteria:

• Criterion 1: A single material, no prior treatment of the tooth surfaces required, straightforward to use.

•

• Criterion 2: A non-metallic material with aesthetic qualities that patients find acceptable for use in the posterior regions.

•

• Criterion 3: A material which has undisputable biological qualities and is sufficiently long-lasting.

(Colon, Villat)

PORTLAND CEMENT - MTA

•	Ca₃Si	Calcium trisilicate
---	-------	---------------------

- Ca₂Si Calcium disilicate
- Ca₃Al Calcium aluminate
- Ca₄AlFe Calcium aluminoferrite
- CaSO4
- **BiO**₃
- Calcium sulphate
- Bismuth trioxide



÷

PORTLAND CEMENT - MTA

- Pulp capping
- Pulpotomy
- Apexification (no multiple visit)
- Endodontic repair material
- Surgical endodontics

PORTLAND CEMENT - MTA

Problems

- To obtain sufficient mechanical strength values.
- To accelerate the setting reaction to obtain early strength compatible with its use in clinical practice.
- To improve the conditions for use so that it can be inserted in a cavity and modelled properly.
- To manage the costs so that it can be used routinely.
- The main problem are the aluminate components, which make the product fragile.

Biodentine

SEPTODONT 58, rue du Pont de Créteil 94107 Saint-Maur-des-Fossés Cedex France Tel : 33 (0) 1 49 76 70 00

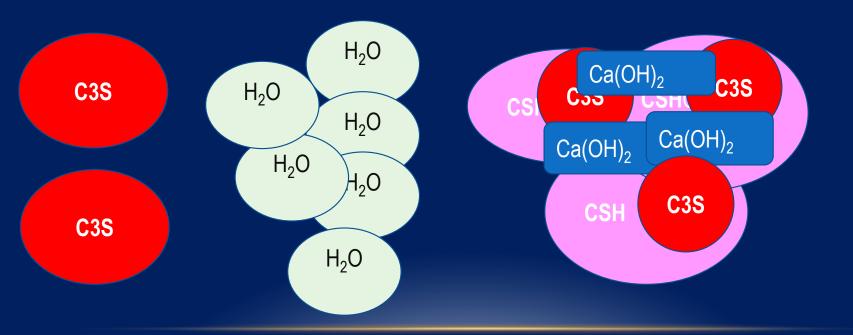
CE 0459

ACTIVE BIOSILICATE TECHNOLOGY ™ SEPTODONT

Active Biosilicate Technology[™] is a proprietary technology developed according to state-of-the-art pharmaceutical background applied to the high temperate ceramic mineral chemistry.

BIODENTINE - COMPOSITION

• Powder

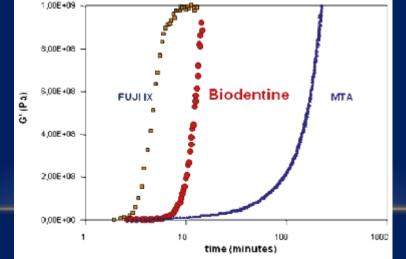

 Ca_3SiO_5 (tricalcium silicate C3S) Ca_2SiO_5 (dicalcium silicate C2S) $CaCO_3$ (calcium carbonate) CaO (calcium oxide) Fe_2O_3 (iron dioxide) ZrO_2 (zirconium dioxide) Main core material Second core material Filler Filler Shade Radiopacifier

Liquid
 CaCl₂ . 2 H₂O
 Hydrosoluble polymer
 Water

Accelerator Water reducing agent

BIODENTINE – SETTING REACTION

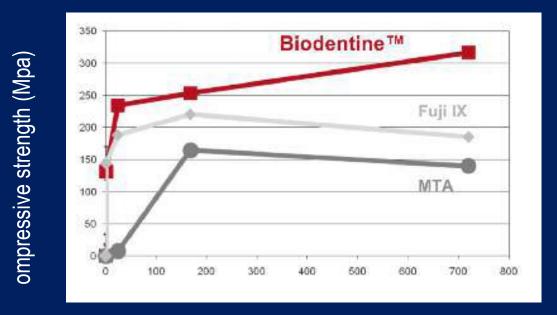
• $2(3CaO.SiO_2) + 6H_2O \rightarrow 3CaO.2SiO_2.3H_2O + 3Ca(OH)_2$ C3S CSH


The hardening process results from of the formation of crystals that are deposited in a supersaturated solution.

Setting time: 9 -12 min.

SETTING TIME

The working time of Biodentine[™] is up to 6 minutes with a final set at around 10-12 minutes. The classical glass ionomer sets faster that Biodentine[™] in less than 4 minutes. This represents a great improvement compared to the other calcium silicate dental materials (ProRoot® MTA), which set in more than 2 hours. The setting times of Biodentine[™] are in the same range as the


amalgams

POROSITY

BiodentineTM exhibits lower porosity than ProRoot[®] MTA. The density and the porosity of BiodentineTM and Fuji IX are equivalent.

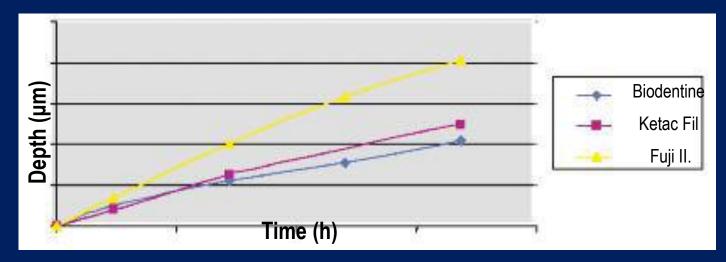
COMPRESSIVE STRENGTH

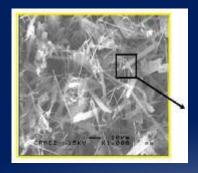
Time (h)

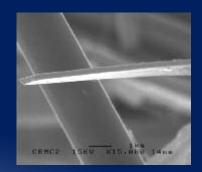
MICRO HARDNESS

The reported micro hardness values for natural dentine are in the range of 60-90 HVN.

(O'Brien 2008). Biodentine $^{\text{TM}}$ has surface hardness in the same range as natural dentine.

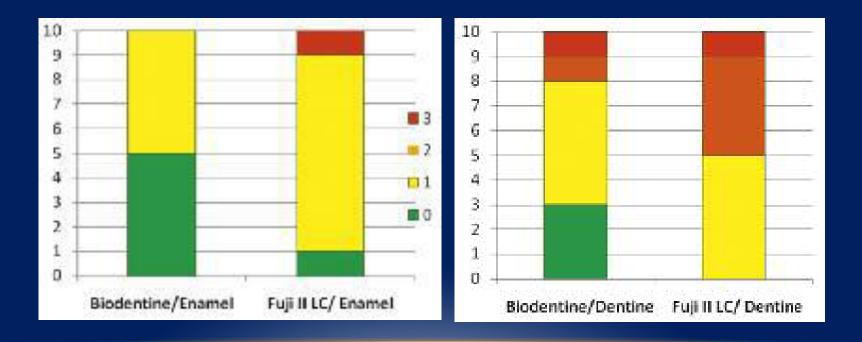

RADIOOPACITY


3.5 mm of aluminum. This value is over the minimum requirement of the ISO standard (3 mm aluminum). This makes Biodentine[™] particularly suitable in the endodontic indications of canal repair.

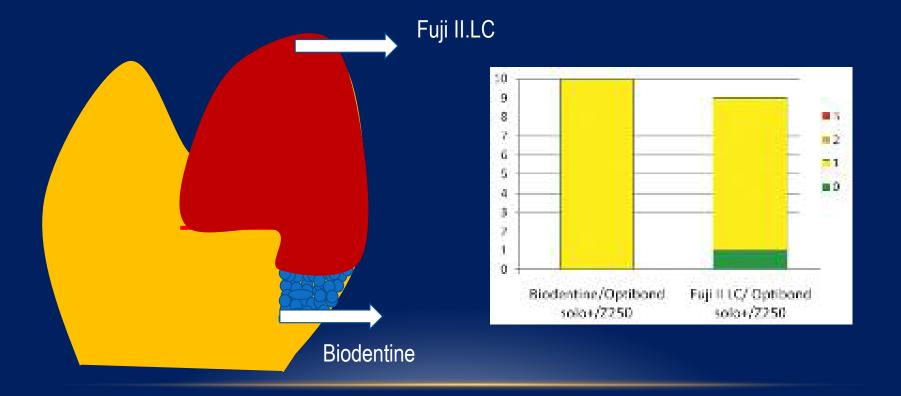

COMPARISON WITH GLASS IONOMERS AND PRO ROOT® MTA

It can be concluded that Biodentine[™] has a mechanical behavior similar to glass ionomers and is also similar to natural dentine. The mechanical resistance of Biodentine[™] is also much higher than that of ProRoot[®] MTA.

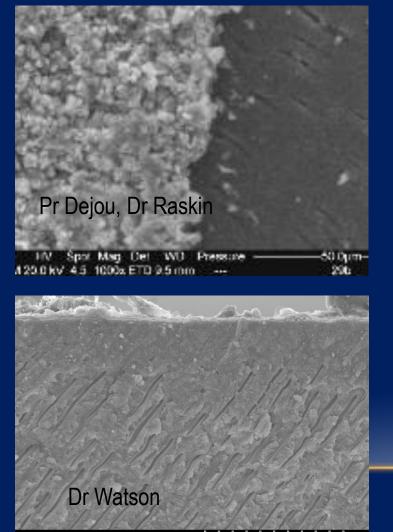
RESISTANCE TO ACID



41

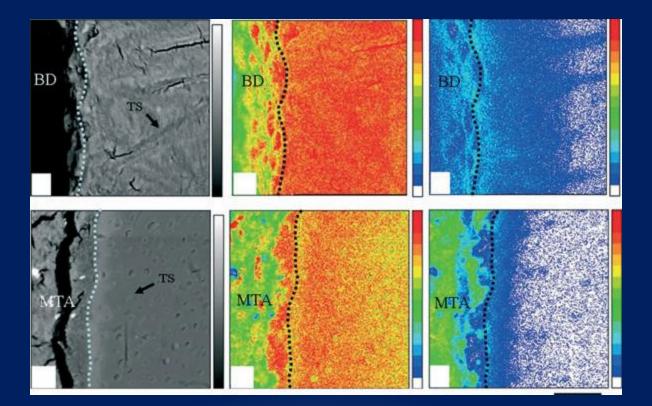

MICROLEAKAGE

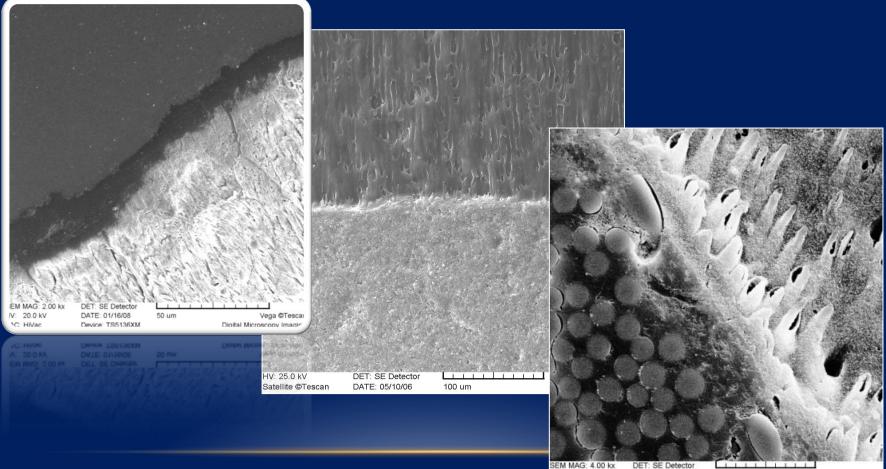
Leakage was evaluated separately, in contact with enamel or in contact with dentineBiodentine[™] exhibits better leakage resistance both toenamel and to dentine compared to Fuji II LC.



MICROLEAKAGE

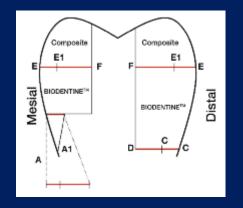
• Comparison to Fuji II LC (the combination with Optibond)


INTERFACES - BIODENTINE



INTERFACE

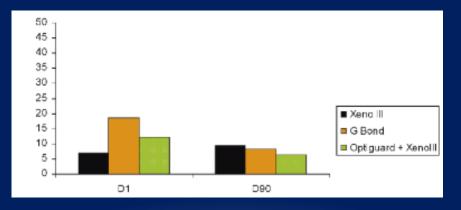
INTERFACES - COMPOSITE



HV: 20.0 kV VAC: HiVac

DET: SE Detector		
DATE: 06/19/07	20 um	Vega ©Tescan
Device: TS5136XM		Digital Microscopy Imaging

MICROLEAKAGE


- Dye penetration
- At the enamel BIODENTINE[™] interface:
- % Dye penetration = (AA1/AB) * 100%
- • At the dentin BIODENTINE[™] interface:
- % Dye Penetration = (CC1/CD) * 100%
- • At the composite BIODENTINE[™] interface:
- % Dye Penetration = (EE1/EF) * 100%

MICROLEAKAGE

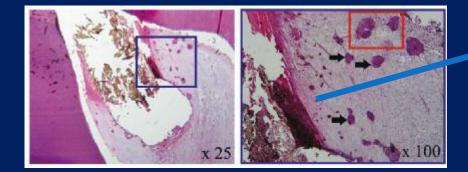
The interfaces which are developed between Biodentine[™] and

the dental surfaces (enamel and dentine) as well as with adhesive systems (Xeno® III or G Bond), are very resistant to micro leakage, with or without pretreatment by polyacrylic acid solutions. The choice of water based adhesive systems might be preferable.

BIOCOMPATIBILITY

Followed the guideline ISO 7405 – 2008

- Cytotoxicity tests (ISO 7405, ISO 10993-5) Biodentine, mTA, Ca(OH)₂
- Sensitization tests (ISO 7405, ISO 10993-1)
- Genotoxicity tests (ISO 7405, ISO 10993-3, OCDE 471)
- Cutaneous irritation tests (ISO 7405, ISO 10993-10)
- Eye irritation tests (OCDE 405)
- Acute toxicity tests (ISO 7405, ISO 10993-11, OCDE 423)


PRECLINICAL SAFETY CONCLUSION In conclusion, Biodentine[™] is safe.

Compared to well known dental materials such as Dycal® (calcium hydroxide), Biodentine[™] exhibits less cytotoxicity. Moreover, when compared to ProRoot® MTA,Biodentine[™] demonstrates at least equivalent biocompatibility.

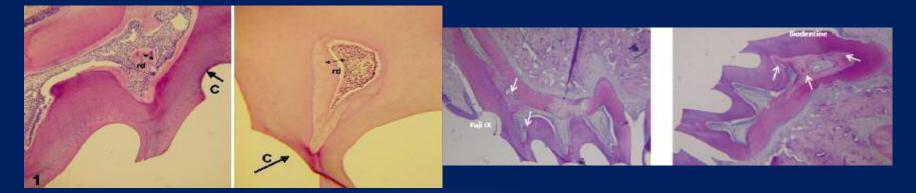
BIOACTIVITY – IN VITRO PULP CAPPUNG

28 days

Dentine bridge

To conclude, Biodentine[™] is able to stimulate initiation and development of mineralization.

BIOACTIVITY - ANGIOGENESIS


The concentration level of TGF- β 1 was enhanced by both ProRoot® MTA and Biodentine[™]. Moreover, VEGF and FGF-2 were enhanced in presence of Biodentine[™].

Biodentine[™] is able to stimulate angiogenesis, in order to heal pulp fibroblasts.

BIOACTIVITY – INDIRECT PULP CAPPING

Biodentine[™] was able to stimulate a reactionary dentine which is a naturalbarrier against bacterial invasions. The reactionary dentine formation stabilises at

3 months, indicating that the stimulation process is stopped when a sufficient dentine

Goldberg 2009

BIOACTIVITY – DIRECT PULP CAPPING AND PULPOTOMY

Biodentine[™] is a suitable material for pulpotomy

12 weeks

and direct pulp capping

12 weeks

Biodentin is at least equivalent MTA, better than the others

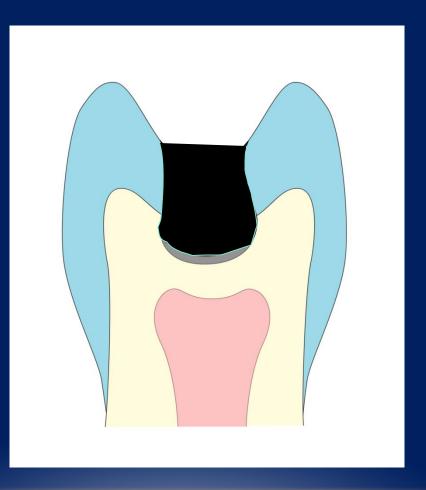
OVERALL BIOACTIVITY

 Biodentin was well tolerated. Moreover, Biodentine[™] was able to promote mineralisation, generating a reactionary dentine as well as a dense dentine bridge. These phenomena illustrate the great potential for Biodentine[™] to be in contact to the pulp, by demonstrating its bioactivity in several indications.

As a conclusion, Biodentine[™] is bioactive.

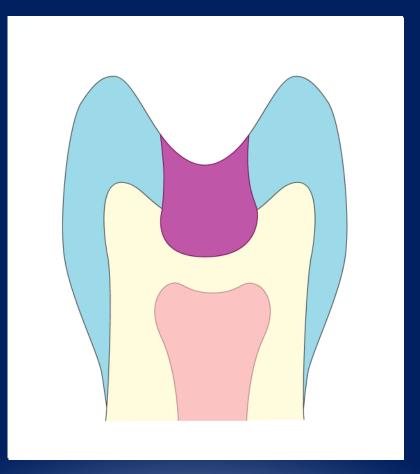
CLINICAL EFFIFACY

- Biodentine[™] can be used as dentine substite under the composite
- Biodentine[™] is used as a direct pulp capping material
- Biodentine[™] is used as an endodontic repair material



CLINICAL EFFIFACY

 Biodentine[™] can be used as dentine substite under the composite


When and why?

SUBSTITUTION OF DENTIN

Good connection to dentin and – bioactivity!!!!

Deep caries, perforation: Direct and in direct pulp capping.

CLINICAL EFFIFACY

Biodentine[™] is used as a pulp capping material

How much carious dentin can be left? As small amount as possible, clean borders!

Bioactive material only!!!

Pre Op

Post Op – Biodentine TM

Post Op – Composite material – 2 weeks later

Dry operating field is important!!!!

If possible use rubber dam!

It is posible to cover Biodentine [™] with a composite filling in the same session

- selfetching adhesive systém (water content) can be recommended.

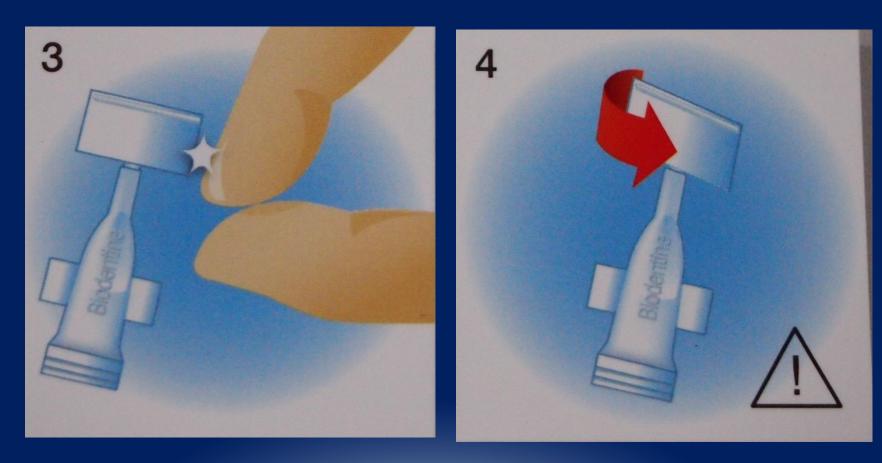
Redoing of composite part of the filling can be done after weeks or months.

Pulpotomy - deep caries. Primary molars – no sign of pulpitis. Before root resorption.

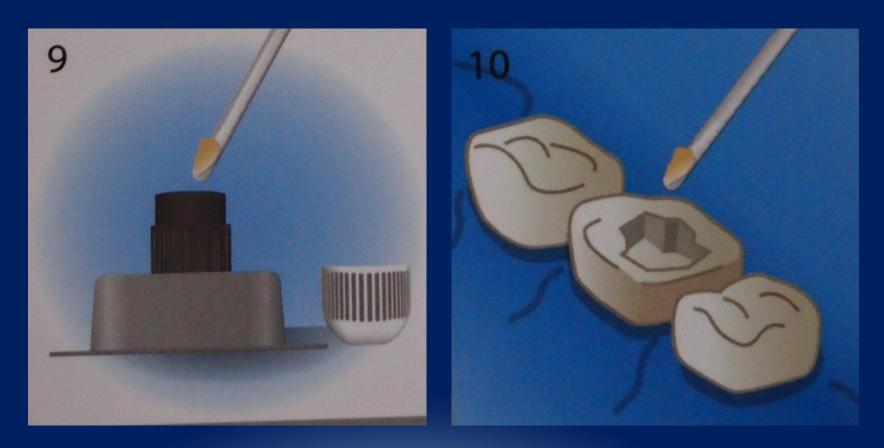
CLINICAL EFFIFACY

- Biodentine[™] is used as an endodontic repair material
- Perforation
- Apexification
- Resorption

- Stop bleeding !
- Dry operating field !
- After setting root canal filling.


Find the perforation first! Fill the root canal ! Fill the perforation.





CLINICAL TIPS

- Use metal or plastic instruments spatulas, amalgam gun or MTA gun.
- If material is too runny wait.
- If material is too hard chceck if all liquid has been poured into the capsule, if yes re.mix 10 s.
- Material is too slumpy it is not sculptable wait, do not overwork it crystal structure can be destroyed and it prevents setting.
- 12 min is too long? Min working time, 6 min setting time in oral cavity.

CLINICAL TIPS

- Trimming is not necessary, at the end of the setting it is possible to shape the material do not overwork the material.
- Matrix removal at the end of the setting time, it can be treated with vaseline or orange solvant.
- Patints should be advise to be careful forst hours (they should avoid liquids which are too hot, too cold, too acid. The staining is on the surface.
- Second visit the surface layer should be removed using red coded (fine) diamond bur.

REFERENCES

Scientific File – Septodont

Others scientific papers:

Biodentine[™] induces TGF-β1 release from human pulp cells and early dental pulp mineralization

P. Laurent1, J. Camps1, I. About1,2
1: Laboratoire Interface Matrice Extracellulaire Biomatériaux (IMEB), Faculté d'Odontologie, Université de la Mediterranée;and
2: Institut des Sciences du Mouvement UMR 6233, Université de la Méditerranée et CNRS, Marseille, France
Article first published online: 22 DEC 2011 DOI: 10.1111/j.1365-2591.2011.01995.x

Biodentine[™] Scientific file

Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine L. Han & T. Okiji Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan IEJ doi:10.1111/j.1365-2591.2011.01924.x

Quantitative Evaluation by Glucose Diffusion of Microleakage in Aged Calcium Silicate-Based Open-Sandwich Restorations

S. Koubi,1, 2 H. Elmerini,1, 3 G. Koubi,1, 2 H. Tassery,1, 2 and J. Camps1, 4 International Journal of Dentistry Volume 2012, Article ID 105863, 6 pages doi:10.1155/2012/105863

Dentin-cement Interfacial Interaction: Calcium Silicates and Polyalkenoates

A. R. Atmeh, E. Z. Chong, G. Richard, F. Festy and T. F. Watson *B. J DENT RES* published online 20 March 2012
<u>http://jdr.sagepub.com/content/early/2012/03/20/0022034512443068</u>

Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth — a prospective study Gilles Koubi & Pierre Colon & Jean-Claude Franquin & Aline Hartmann & Gilles Richard & Marie-Odile Faure & Grégory Lambert Clin Oral Invest DOI 10.1007/s00784-012-0701-9