SPIROMETRY

I. Describe static volumes and capacities.

- II. inspiratory reserve volume
- III. expiratory reserve volume
- IV. residual volume

Resting breathing	unit
Frequency	(breaths/min)
tidal volume	Litre (l)
Minute Ventilation	l/min

Apneic pause in inspiration:

II. Dynamic lung volumes

- VI. inspiratory capacity
- VII. expiratory capacity

VIII. total lung capacity

Hyperventilation	u	nit
Frequency	(1	breaths /min)
tidal volume	L	litre (l)
Maximal Minute Ventilation (MMV)	1/	'min

Apneic pause in expiration:.....

Conclusion_

ELEKTRICKÝ MODEL AORTÁLNÍHO PRUŽNÍKU

I. Schematically redraw modeled records and describe the changes

Changes in stroke volume

	SV=50ml	SV=90m	BP, mmHg
SBP			
DBP			
ΔBP			
рВР			

Time, s

Change in peripheral resistance

			D D
	R = 0,5–0,8 mmHg ⁻ s/ml	R = 1,2–1,5 mmHg ⁻ s/ml	mmHg
SBP			
DBP			
ΔBP			
рВР			

Change in compliance

			BP.
	C = 0,5 ml/mmHg	C = 2,0 ml/mmHg	, mmHg
SBP			
DBP			
ΔBP			
pBP			

Time, s

Time, s

II. Interest tasks:

Model and describe the changes in blood pressure during the stay in the sauna followed by a cool down (the heat reduces peripheral resistance, the cold increases peripheral resistance).

BP, mmHg

Time, s

Model and describe the changes in blood pressure during physical activity (gradual increase of systolic output and heart rate, and then reduction of peripheral resistance).

BP, mmHg

Time, s

Model and describe essential hypertension (increased SV and TF by + 20%) and fully developed hypertension (return of TF and SV to the original values and increased resistance by 40%).

BP, mmHg

Time, s

Conclusion

BLOOD FLOW IN VEINS

Draw a diagram of veins and valves. Draw the course of the veins on the volar side of the forearm and mark the location of the flaps of your experiment.

Conclusion