Nervous tissue

Functions of Nerve Tissue

- <u>reacts to stimuli</u> from the internal and external environment and conducts impulses to organs,
- analyses and integrates stimuli to provide appropriate, co-ordinated responses organs,
- <u>conducts impulses</u> from the sense organs and receptors to the central nervous system (CNS),
- transmits impulses from the CNS to the effectors (skeletal muscle, smooth muscles and muscle)

glands).

central (CNS) peripheral (PNS)

motor (*voluntary*) autonomic

Origin of NS: neuroectoderm

Nervous tissue structure nerve cells (neurons) + supporting cells (glia)

Neuron

Perikaryon (cell body) Dendrite(s)

Axon hillock Axon – only 1

Telodendria

(a)

Triangular shape of perikaryon (pyramidal neuron from cerebral cortex)

axon

Nissl substance

dendrite

nucleolus nucleolus

Shape of perikaryon (usually depends on the number of dendrites)

- 1, 2 multipolar neurons: Nissl bodies
- **3** pseudounipolar neurons:lipofuscin

Classification of neurons (according to number of processes)

- (Apolar)
- Unipolar
- Bipolar
- Pseudounipolar
- Multipolar
- (Amacrine)

Classification of neurons (according to ...)

the length of axon: Golgi type I (long axon) – length up to 1 m Golgi type II (short axon) – length about several 1 cm • the function: sensitive neurons (aferent)/+ conduct impulses from the receptors to CNS motor neurons (eferent) – conduct impulses from CNS to the efector cells interneurons – are situated between sensitive and motor neurons; represent 97 % of all neurons

Dendrites (from Greek dendron, "tree") are the branched projections of a <u>neuron</u> that act to conduct the electrical stimulation, dendritic spines are small membranous protrusions electric intensity vector acts in perpendicular direction to dendrite axis.

Axon (neurit, nerve fibre)

- is a long, slender projection of <u>neuron</u>, that conducts <u>electrical impulses</u> away from the perikaryon of neuron,
- axon hillock, initial segment
- contains neurofilaments, neurotubules
- its surface can be covered by sheath(s): Schwann sheath, myelin sheath,
- telodendria

Sheaths of axons (neurits)

Schwann cells (in PNS)

Myeline sheath

Oligodendrocytes (in CNS)

Nerve sheaths

- myelin sheath
- Schwann sheath (in PNS)
- oligodendrocytes (in CNS)

Myelin sheath

1 - 20 µm thick
70 % H₂O, lipids, proteins
spirally arranged lipoprotein lamellae
by Ranvier nodes is separated into internodia (Ranvier segments, 0,6–2,0 mm long)

Neurilemma = composed of Schwann cells

Fibers without myelin sheath - Schwann cell surrounds more axons
myelinized fibers - each internodium has its own Schwann cell

Synapses

neurotransmitte

dendrites

receptor

serve for transmission of impulses between neurons or neuron and effector cell, chemical or electric synapses, Synapse synaptic vesicles three parts of synapse: synapse 0 1) presynaptic knob 2) synaptic cleft 3) postsynaptic membrane

Function of synapse

Interneuronal synapses neuron – neuron

Axodendritic Axosomatic Dendrodendritic axoaxonal

Peripheral synapses neuron – effector cell

Neuroglia (glial cells)

Supporting cells in nerve tissue Functions: supportive, nutritive, (immuno)protective Central glia: fibrous astrocytes protoplasmic oligodendroglia microglia (Horteg) ependyma Peripheral glia: -Schwann cells satellite cells

Neuroglia

Central glia

- astrocytes hematoencephalic barrier
- oligodendrocytes myelin
- mikroglia phagocytosis
- ependymocytes lining of CNS cavities + liquor production

Periferal glia

- Schwann cells (neurilemma) myelin
- satelite cells isolation of perikarya in ganglia

Cortex cerebri (HE) – lamina pyramidalis

Cortex cerebri (HE) – lamina ganglionaris with large pyramidal cells of Betz

Cortex cerebri (HE) – pyramidal cell

Cerebellum (impregnation) – Purkinje cell

Medulla spinalis (HE) – motor neuron

Spinal ganglion (HE)

to a variat

pseudounipolar neurons

bundles of nerve fibers

nerve

Ganglion cell + satellite cells

Peripheral nerve (HE) – cross section

Peripheral nerve (HE) cross section

Axon myelin sheath

Schwann cell nucleus

Peripheral nerve (HE) longitudinal section

Myelinated nerve fiber (axon)

Node of Ranvier

- Nuclei of Schwann cells

Cleft of Schmidt-Lanternman

Unmyelinated nerves

Histology Lab Part 6: Slide 15

Astrocytes (macroglia)

Protoplasmic astrocytes

Functions: cytoplasmic processes are ended by <u>end feet</u>, which form continuous layer – limiting membranes on the surface of: 1) <u>blood capillaries</u> (*membrana limitans gliae perivascularis;* together with endothelium it forms blood-brain barrier, 2) brain (*membrana limitans gliae suberficialis*) Astrocytes have protective and nutritive function

Membrana limitans gliae superficialis

PERIPHERAL GLIA: SCHWANN CELLS

nerve fibres (axons & myelin sheaths)

> Schwann cell nuclei

Seven Processes in Neurotransmitter Action

An Oligodendrocyte

Nervous tissue structure

nerve cells (neurons) + supporting cells (glia)

Group of motor end plates

these muscle fibers will contract simultaneously

(b) Simplified representation of a synapse

