Hypertension treatment simply and effectively

IVAN RIHACEK, PETRA RIHACKOVA
II. DEPARTMENT OF INTERNAL MEDICINE, ST. ANNA FACULTY HOSPITAL AND MU, BRNO DEPARTMENT OF PHARMACOLOGY, FACULTY OF MEDICINE, BRNO

Definition of arterial hypertension

The most often disease of cardiovascular system
AH + hyperlipidemia + DM + nicotine addiction
L
premature atherosclerosis \& ischemic heart disease

- Definition : repeated increase of blood pressure (systolic-diastolic) $140 / 90 \mathrm{mmHg}$ or higher in patients older than 18 years in at least two of three measurements in two different checks
- In most cases it is a stable, sustained hypertension, may occur paroxysmal hypertension

Treatment goals in hypertension patients

2013 ESH/ESC - AH Treatment Management Guidelines

SBP < 140 mm Hg

patients with low and medium CV risk
patients with diabetes mellitus
prior stroke or ischemic attack
ischemic heart disease
chronic kidney disease
SBP between 140 to 150 mm Hg
older patients < 80 years
older patients >80 years in good overall condition
DBP $<90 \mathrm{~mm} \mathrm{Hg}$
in all cases except diabetes ($80-85 \mathrm{~mm} \mathrm{Hg}$)

CV = cardiovascular, SBP= systolic blood pressure, DBP = diastolic blood pressure, AH = arterial hypertension, ESH = European Society of Hypertension, ESC = European Society of Cardiology

Statistical analysis is boring, but it has valuable information

Some statistical data

Why treat hypertension?

Prevalence in Czech republic35\%Patients over 60 years $>50 \%$

Reducing SBP by 10 mmHg and DBP by 5 mmHg
reduces stroke risk
reduces heart attack risk
reduces CV event risk
by 45%
by 20\%
by 33\%

Treatment goals of hypertension

All population

Diabetes

Nephropathy with proteinuria $\geq 1 \mathrm{~g} \quad$ SBP below 130 mmHg

Target values during ambulatory BP monitoring

Ø 24 hours BP

< $130 / 80 \mathrm{mmHg}$

Ø BP during daytime
Ø BP during sleep
< 135/85 mmHg
$<120 / 70 \mathrm{mmHg}$

Systolic dipping
≥ 10 \%

Treatment goal of diabetes

Primary prevention

HBA1c < $45 \mathrm{mmol} / \mathrm{mol}$

Secondary prevention

HBA1c < $60 \mathrm{mmol} / \mathrm{mol}$

Secondary prevention + complicated (micro, macro) diabetes with high risk of hypoglycemia - increased CV risk in accurate compensation...according to clinical trials (ADVANCE, ACCOMPLISH), individual approach

HbA1c $=$ glycosylated hemoglobin, standard $=20-37 \mathrm{mmol} / \mathrm{mol}$, prediabetes $=38-47 \mathrm{mmol} / \mathrm{mol}$, diabetes $=$ over $48 \mathrm{mmol} / \mathrm{mol}$ (by SZÚ = NIPH = National Institute of Public Health)

Treatment goal of hyperlipidemia

Medium Risk
$(1-4 \%$ SCORE $)$
LDL $<3,0$ mmol/I

High Risk $(5-9 \%$	Sery High Risk $(\geq 10 \% ~ S C O R E)$

Current situation in Czech republic

60-70 \% hypertensive patients are treated

45 \%
pts treated achieve BP target values

55 \%
pts treated don ${ }^{\prime}$ t achieve BP target values

Current situation in Czech republic

What is the problem, that

55 \% of treated patients don 't achieve target BP?

The most common causes of inadequate treatment

The most common causes of secondary hypertension

- Renoparenchymal hypertension - after glomerunephritis, nephropathy, polycystic kidney disease, chronic tubulointerstititial nephritis (analgetics, lithium) = positive laboratory findings in urine
- Primary hyperaldosteronism - aldosterone-producing adenoma (independent on axis RAAS)
- Feochromocytoma - chromaffin cell tumor of the sympathetic NS, overproduction of catecholamines \rightarrow arterial hypertension
- Cushing s syndrome - hypercortisolism \rightarrow arterial hypertension
- Renovascular hypertension - more than 20\% pts examinated have renal arthery stenosis
- Neurogenic hypertension - arises vascular compression of the medulla oblongata, where are stored centers for blood pressure regulation.

The causes of poor control of hypertension and the high cardiovascular risk

Insufficient use of combinations
Insufficient use of fixed combinations
Complicated treatment schedule

Poor compliance

Guidelines ESH/ESC 2013

Significantly Increased BP
($\geq 160 / 100 \mathrm{mmHg}$)
or high CV risk
Treatment Initiation of 2 drugs combination

Original combination of
full dose
Adding a third drug
$\downarrow \quad \mathrm{BP} \geq 140 / 90 \mathrm{mmHg}$
change to a different combination of the 2 drugs
\downarrow
Combinations of 3 drugs in full dose

How should be an ideal fixed combination?

Combination of two or three drugs with long acting efficacy

Dosing of all components once daily

Additive antihypertensive effect, influencing other pathogenic mechanisms (AS, kidney, metabolism, increased heart rate, tissue effect)

Most preferred combinations of the drugs

ACE-I or sartan
+
Dihydropyridine Ca blocker
4
Diuretic (not loop)

Essential non-pharmacological treatment of

 arterial hypertension2. Limitation of
3. Decrease of
4. Increase of
5. Prohibition
6. Increased

And again the statistics...

Combination therapy of hypertension

To reach target blood pressure below 140/90 mmHg combination is necessary in 70-80 \% hypertensive pts

If the patient treated with adequate triple combination in adequate doses and taking prescribed medication

Case reports with interactive questions

Interactive questions

2 questions will be for each case study
The question is posed in the title of slide
There are 3 possible answers, indicated by the numerals 1-3

The correct answer is only one
I will show the correct answer on the next slide

1. Patient Z-M (M)

Man. Age 54 years, $180 \mathrm{~cm}, 96 \mathrm{~kg}, \mathrm{BMI}: 29,6$

FH: father heart attack in 60 years age PH: Smoker: 10 cigarettes/day, chronic venous insufficiency grade III. Hypertension: since 1998, treated by combination BB (Lokren $20 \mathrm{mg} 1 / 2-0-0$) + ACEI (Ramipril 5 mg 1-0-0) + Central drug (Moxonidine 0,4 mg 1-0-1).

BP RUE seated: 158/98 Pulse: 62 reg, carotids without sound, CP comp., pulsation LE+

Laboratory: increased levels of lipids: CH 6,6 LDL 4,4 Tg 2,3
Glycemia, K, UA and renal function in a standard. Urine + sed: no pathology.
ECG without signs of LV hypertrophy, normal
ABPM: hypertension daily with morning and late afternoon increase in blood pressure. Average of BP : $143 / 93 \mathrm{mmHg}$

FH - family history, PH - personal history, ABMP - ambulatory blood pressure monitoring, P - pulse, RUE - right upper extremity. LE - low extremity, CP - cardiopulmonar, - K - potassium - UA - uric acid

Risk factors

$>$ Age
Gender
\perp SBP
> Total cholesterol
$>$ Smoking

54 years
Man

158 mmHg
$6,6 \mathrm{mmol} / \mathrm{I}$ (LDL $4,4 \mathrm{mmol} /$)
Yes

1. Patient Z-M (M)

Dg: I10 Hypertension with very high risk according to SCORE
E782 Hyperlipoproteinemia mixed
Overweight
Chronic venous insufficiency grade III
Smoking
(risk SCORE 15 \%, very high)

Question 1. What is the target blood pressure, LDL and

 ABPM in this patient?1. $<140 / 90 \mathrm{mmHg},<3,0 \mathrm{mmol} / \mathrm{l}$ a $<130 / 85 \mathrm{mmHg}$
2. $<140 / 90 \mathrm{mmHg},<2,5 \mathrm{mmol} / \mathrm{l} \mathrm{a}<130 / 90 \mathrm{mmHg}$
3. $<140 / 90 \mathrm{mmHg},<1,8 \mathrm{mmol} / \mathrm{l} \mathrm{a}<130 / 80 \mathrm{mmHg}$

Answer 1. What is the target blood pressure, LDL and ABPM

 in this patient?1. $<140 / 90 \mathrm{mmHg},<3,0 \mathrm{mmol} / \mathrm{l} \mathrm{a}<130 / 85 \mathrm{mmHg}$
2. $<140 / 90 \mathrm{mmHg},<2,5 \mathrm{mmol} / \mathrm{l} \mathrm{a}<130 / 90 \mathrm{mmHg}$
3. $<140 / 90 \mathrm{mmHg}$, $<1,8 \mathrm{mmol} / \mathrm{l}$ a $<130 / 80 \mathrm{mmHg}$

Question 2. What is the correct approach to adjusting the treatment of hypertension in this patient?

1. Add low dose diuretic into that combination
2. Change medication on a fixed triple combination of $A C E I, D$, and CaB
3. Change to a fixed combination of sartan and D and keep the $B B$ and moxonidine

Answer 2. What is the correct approach to adjusting the treatment of hypertension in this patient?

1. Add low dose diuretic into that combination
2. Change medication on a fixed triple combination of $A C E I, D$, and CaB
3. Change to a fixed combination of sartan and D and keep the BB and moxonidine

1. Patient Z-M (M)

Goal: BP above 140/90 mmHg, LDL < 1,8 ABPM above $130 / 80 \mathrm{mmHg}$

Treatment:

Non pharmacological: weight reduction, diet - salt and fat limitation, endurance physical exercise, stop smoking

Pharmacological: (from 3 drugs to 1 tablet)
ACE-I + D + Ca blocker - Triplixam 10/2,5/5mg 1-0-0.
(Triplixam = perindopril arginin + indapamid + amlodipin)

1. Patient Z-M (M)

ACE-I + D + Ca blocker - Triplixam 10/2,5/5mg 1-0-0.

Why this treatment?
ACE-I

- Antihypertensive and cardioprotective effect
- Vasoprotective and renal protective effect
- Positive effect on the carbohydrate metabolism
- Improve prognosis in HR patients with CHD, stroke, atherosclerosis and diabetes

Ca blockers

- Universal antihypertensive therapy
- Inducing systematic vasodilation
- no negative effects on lipid metabolism

Diuretics

- With long term effect, act in the distal tubule of the kidney, indapamide also has the strongest vasodilatory effect
(Triplixam = perindopril arginin + indapamid + amlodipin)

1. Patient Z-M (M)

Medical check up after 3 months:
Initial values : 158/98 mmHg, Pulse 62 reg, Weight 96 kg .
BP RUE seated: 136/86 mmHg Pulse: 70 reg, Weight: 94 kg , continues smoking
ABPM: curve adjustment in the morning and afternoon, the average BP $128 / 78 \mathrm{mmHg}$ (orig.143/93)
Lipids: cholesterol 6,4 LDL 3,6 (orig. - 4,4)

Dg: 110 High risk hypertension according SCORE
E782 Hypercholesterolemia mixed
Obesity, chronic venous insufficiency grade III
(risk SCORE 9 \%, high risk)

1. Patient Z-M (M)

Goal: LDL < $2,5 \mathrm{mmol} / \mathrm{l}$

Treatment:

Non pharmacological: weight reduction, diet - salt and fat limitation, endurance physical exercise, stop smoking - continue to apply.

Pharmacological treatment:
Triplixam 10/2,5/5mg 1-0-0, Atorvastatin 20mg 1-0-0.

2. Patient R-P (F)

Woman. Age 62 years old, $178 \mathrm{~cm}, 95 \mathrm{~kg}, \mathrm{BMI} 30,6 \mathrm{FH}:$ negative PH: 10 years DM II in PAD, 10 years HLP in statine therapy Abuse: non smoker Hypertension : since 10/1998 found during preventive inspection
Clinical findings: obesity with no any other pathology
BP seated: RUE 154/88 mmHg Pulse: 84 reg Waist: 108 cm

Laboratory: G 8,2 mmol/I HbA1c: $55 \mathrm{mmol} / \mathrm{mol}$ LDL 3,4 Urea, Creatinine, liver tests neg.
ECG: incomplete right bundle branch block
ABPM: daily hypertension, the average BP $24 \mathrm{~h}: 142 / 78 \mathrm{mmHg}$, TF 80.
Microalbuminuria: positive $45 \mathrm{mg} / 24 \mathrm{~h}$
Treatment: Concor $5 \mathrm{mg} 1-0-0$, Agen $5 \mathrm{mg} 1-0-0$, Lozap 50 mg 1-0-1, Moduretic $1 / 2-0-0$, Ebrantyl 60 mg 1-0-1, Metformin 1000mg 1-0-1, Sortis 10mg 1-0-0.

Risk factors

$>$ Age
$>$ Gender
>SBP
$>$ Total cholesterol
$>$ Smoking

62 years old
Female

154 mmHg
$5,9 \mathrm{mmol} / \mathrm{l}$ (LDL $3,4 \mathrm{mmol} / \mathrm{l})$
No
$>$ Diabetes with positive albuminuria (multiplies risk 3-5 times)

2. Patient R-P (F)

Dg: 110 Hypertension with high risk according to SCORE more systolic
E112 DM II type in PAD with renal complications (albuminuria)
E782 Mixed hyperlipoproteinemia
Obesitas, Metabolic syndrome
Risk SCORE 5 \% (3 to 5 times higher, DM II and albuminuria, very high)

Question 1. What is the target blood pressure, LDL and HBA1c in this patient?

1. $\mathrm{BP}<140 / 80-85$ LDL $<1,8$ a HBA1c <45
2. $\mathrm{BP}<140 / 90$ LDL < 2,5 a HBA1c < 45
3. $\mathrm{BP}<130 / 80 \mathrm{LDL}<2,5$ a HBA1c <60

Answer 1.
What is the target blood pressure, LDL and HBA1c in this patient?

1. $\mathrm{BP}<140 / 80-85$ LDL $<1,8$ a HBA1c <45
2. $\mathrm{BP}<140 / 90$ LDL $<2,5$ a HBA1c <45
3. $\mathrm{BP}<130 / 80$ LDL $<2,5$ a HBA1c <60

Question 2. What is the drug of first, second and third choice for AH in this patient?

1. ACE-I/sartan + Ca/B + indapamid
2. $\mathrm{CaB}+\mathrm{ACEI} /$ sartan + indapamid
3. ACEI/sartan + indapamid + BB

Answer 2. What is the drug of first, second and third choice for AH in this patient?

1. ACE-I/sartan + CaB + indapamid
2. $\mathrm{CaB}+\mathrm{ACEI} /$ sartan + indapamid
3. ACEI/sartan + indapamid + BB

2. Patient R-P (F)

ACE-I + D + Ca blocker - Triplixam 10/2,5/5mg 1-0-0.

Why this treatment?
ACE Inhibitors and AT1-receptor blockers in diabetic patients with AH can:

- delay terminal renal failure
- Slow down the progression of microalbuminuria / proteinuria
- best combination of two antihypertensives ACE inhibitor is considered to be (and probably also the AT1receptor blocker) with a Calcium channel blocker

Diuretic induces volume depletion and reduce the sodium concentration, which leads to activation of the RAA system. ACE act synergistically and can thus significantly reduce hypertension,

Ca blockers induce systemic vasodilation, no negative effects on lipid metabolism
Beta blocker is allowed to decrease heart rate

Triplixam = perindopril arginin, indapamid, amlodipin, Eucreas = metformin + vidagliptin

2. Patient R-P (F)

Goal: weight reduction BMI under 25, BP under 140/80-85 mmHg, LDL under 1,8 mmol $/ \mathrm{I}$, HBA1c under $45 \mathrm{mmol} / \mathrm{mol}$.

Treatment:

Non pharmacological: weight reduction, endurance physical exercise, salt, sugar and fats limitation in diet

Pharmacological: (reduction from 9,5 to 5 pills)
Triplixam 10/2,5/10mg 1-0-0, Concor 5mg 1-0-0, Eucreas 50/1000mg 1-0-1, Sortis 40mg 1-0-0.

Triplixam = perindopril arginin, indapamid, amlodipin, Eucreas = metformin + vidagliptin

2. Patient R-P (F)

Medical check-up after 3 months:
Initial values: BP 154/88, Pulse 84 reg, Weight 95 kg, LDL 3,4 gly 8,2, HbA1c 55\% BP RUE seated: $136 / 76 \mathrm{mmHg}$ Pulse 80 reg Weight: 95 kg Waist 100 cm

Lipids: LDL 1,9 Glycemia: 5,8 mmol/I HBA1c 48 \%

Treatment: Treatment unchanged, kept well

Triplixam 10/2,5/10mg 1-0-0, Concor 5mg 1-0-0, Eucreas 50/1000mg 1-0-1, Sortis 40mg 1-0-0.

3. Patient J-K (M)

Man. Age 44 years, $172 \mathrm{~cm} 72 \mathrm{~kg}, \mathrm{BMI}: 24,3$
FH: father heart attack in 45 years PH: Non smoker, hypertensive nephropathy 5 years, proteinuria $1,1 \mathrm{~g} / 24 \mathrm{~h}$, Hypertension: since 1990 , treated by combination ACEI/CaB (Prestance $5 / 5 \mathrm{mg} 1-0-0$) + D (Moduretic 50/5 mg 1/2-0-0) + BB (Concor 10mg 1-0-0).

BP RUE seated: 138/86 Pulse 64 reg, carotids without sound, cardiopulm. comp., pulse in LE+

Laboratory: lipids CH 4,8 LDL 2,9 $\operatorname{Tg} 1,6$
Glycemia, K, normal. Krea: 110 umol/l GFR $54 \mathrm{ml} / \mathrm{min} / \mathrm{m} 2$ urine and sediment: proteinuria, no other pathology.
ECG: no signs of LV hypertrophy, finding normal
ABPM: normotension, without night decline of BP, Average 24 h $128 / 77$, day $129 / 78$, night $127 / 76 \mathrm{mmHg}$

Risk factors

$>$ Age
Gender
\triangleright SBP

- Total cholesterol
$>$ Smoking

44 years
Man

138 mmHg
$4,8 \mathrm{mmol} / \mathrm{I} \quad($ LDL $2,9 \mathrm{mmol} / \mathrm{l})$
No
$>$ Nephropathy with proteinuria more than 1g - very high risk, secondary prevention

3. Patient J-K (M)

Dg: I10 Hypertension with very high risk according to SCORE, non-dipping
N189 Nephropathy (hypertensive ?), CKD G3a, A3 (next slide)
(risk SCORE 1-2 \%, nephropathy with proteinuria, very high !!!, \uparrow night BP)

CKD - Chronic kidney disease classification

Stage	Description	GFR (ml/min/1,73 m²)	Clearance ml / s
G1	Normal KF	up to 90	up to 1,5
G2	Mildly reduced KF	$60-89$	$1,0-1,5$
G3a	Moderately reduced KF	$40-59$	$0,75-0,99$
G3b	Moderately reduced KF	$30-39$	$0,5-0,74$
G4	Severely reduced KF	$15-29$	$0,26-0,49$
G5	Very severe, endstage kidney failure	under 15	under 0,25

GF, albuminuria a CV risk

CKD prognosis: According to GF categories($\mathrm{ml} / \mathrm{min}$)		Albuminuria categories		
and albuminuria (mg/mmol krea) or (mg/24 hours)		A1 (standard under $1,5 \mathrm{mg} / \mathrm{mmol}$)	A2 (albuminuria)	A3 (proteinuria)
		Standard or slightly increased	Moderately increased	Severely increased
KDIGO 2012		$<3 \mathrm{mg} / \mathrm{mmol}$ $<30 \mathrm{mg} / 24 \mathrm{~h}$	$3-30 \mathrm{mg} / \mathrm{mmol}$ $30-300 \mathrm{mg} / 24 \mathrm{~h}$	$\begin{aligned} & >30 \mathrm{mg} / \mathrm{mmol} \\ & >300 \mathrm{mg} / 24 \mathrm{~h} \end{aligned}$
G1	up to 90	Low risk	Medium risk	High risk
G2	60-89			
G3a	40-59			Very high risk
G3b	30-39			
G4	15-29			
G5	under 15			

Question 1. What is the target value of BP, LDL and night ABPM?

1. $<140 \mathrm{mmHg},<3,0 \mathrm{mmol} / \mathrm{l} \mathrm{a}<130 / 80 \mathrm{mmHg}$
2. $<130 \mathrm{mmHg},<1,8 \mathrm{mmol} / \mathrm{l} \mathrm{a}<120 / 70 \mathrm{mmHg}$
3. $<140 \mathrm{mmHg},<2,5 \mathrm{mmol} / \mathrm{l}$ a $<125 / 75 \mathrm{mmHg}$

Answer 1.
 What is the target value of BP, LDL and night ABPM?

1. $<140 \mathrm{mmHg},<3,0 \mathrm{mmol} / \mathrm{l} \mathrm{a}<130 / 80 \mathrm{mmHg}$
2. $<130 \mathrm{mmHg},<1,8 \mathrm{mmol} / \mathrm{l} \mathrm{a}<120 / 70 \mathrm{mmHg}$
3. $<140 \mathrm{mmHg},<2,5 \mathrm{mmol} / \mathrm{l} \mathrm{a}<125 / 75 \mathrm{mmHg}$

Question 2.
 What is the correct approach to adjusting the treatment of AH in this patient?

1. To add alpha 1 blocker to this combination
2. Fixed triple combination $\mathrm{ACEI}, \mathrm{D}$ and $\mathrm{CaB}+\mathrm{BB}$, additional CaB in the evening
3. Replace Moduretic for a loop diuretic + verospiron

Question 2.
 What is the correct approach to adjusting the treatment of AH in this patient?

1. To add alpha 1 blocker to this combination
2. Fixed triple combination $\mathrm{ACEI}, \mathrm{D}$ and $\mathrm{CaB}+\mathrm{BB}$, additional CaB in the evening
3. Replace Moduretic for a loop diuretic + verospiron

3. Patient J-K (M)

Goal: SBP under 130 mmHg , LDL < 1,8 ABPM night under $120 / 70 \mathrm{mmHg}$

Treatment:

Non pharmacological: salt and fat limitation, endurance physical exercise.

Pharmacological: evening dose of AH therapy is required, from 2,5 pills to 4 pills

Triplixam 10/2,5/5mg 1-0-0, Concor 10 mg 1-0-0, Zorem 5 mg 0-0-1, Sortis 20 mg 1-0-0.
(Triplixam = perindopril arginin + indapamid + amlodipin)

3. Patient J-K (M)

Medical check-up after 3 months:
BP RUE seated: 126/84 mmHg Pulse 60 reg
ABPM: improving BP curve in the night, 24h BP 122/76, day 124/78, night 118/71 mmHg (remain non - dipper)
Lipids: LDL 1,7 Creatinine: 106 umol/I, GFR $58 \mathrm{ml} / \mathrm{min} / \mathrm{m} 2$

Dg: I10 Hypertension with very high risk according ESH 2013, dipping improved N189 Nephropathy with retention of nitrogenous substances, proteinuria, CKD G3a, A3 GF $58 \mathrm{ml} / \mathrm{min}$

Conclusions

Achieving target BP values is current priority of antihypertensive treatment

The most common causes of inadequate control of blood pressure is inadequate treatment and poor adherence.

The majority of patients (70-80\%), need combination therapy to achieve normalization of blood pressure.

Fixed combinations reduce the number of tablets and improve access to treatment (EBM recommendations).

Physiological Parameters

Glycaemia:
 Total cholesterol:
 TG:
 HDL:
 LDL:

Waist: - better indicator than BMI.
Men : risky up to 94 cm , very high risk up to 102 cm Women: maximum 80 cm , very high risk up to 88 cm .

