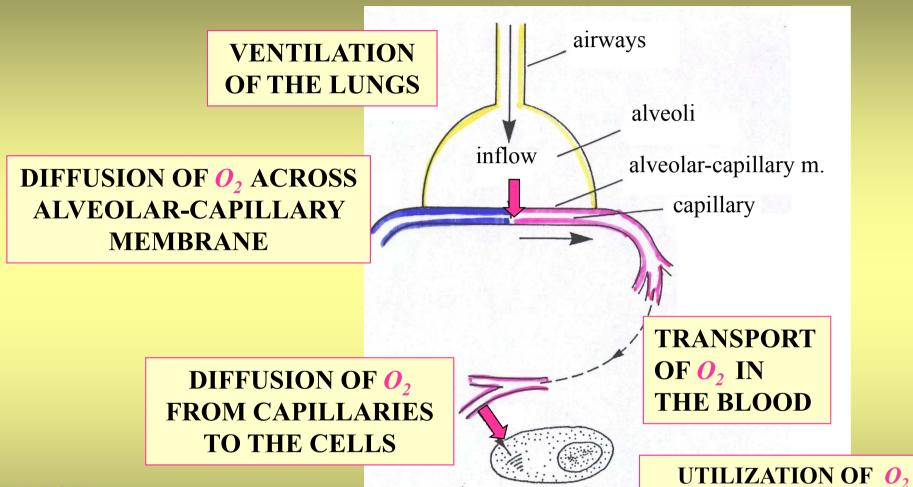
RESPIRATORY FUNCTIONS

OTHER FUNCTIONS OF RESPIRATORY SYSTEM


PULMONARY DEFENCE FUNCTIONS (e.g. mucociliary clearance, function of pulmonary macrophages, ...)

METABOLIC AND ENDOCRINE FUNCTIONS (e.g. production of surfactant, conversion of angiotensin I to angiotensin II, ...)

RESPIRATORY SYSTEM

- AIR PASSAGES (CONVECTION)
- LUNGS AS GAS EXCHANGING ORGAN
- PUMP THAT ENABLES VENTILATION OF THE LUNGS (chest wall with respiratory muscles)
- TRANSPORT OF O₂ AND CO₂ IN THE BLOOD
- NERVOUS SYSTEM CONTROLLING THE RESPIRATORY MUSCLES (areas in CNS, efferent motor neurons to respiratory muscles, and afferent neurons from various receptors)

STEPS IN THE DELIVERY OF O, TO THE CELLS

AT REST

O₂ INTAKE ~300 ml / min

CO₂ OUTPUT ~250 ml / min

RESPIRATORY QUOTIENT

 $\frac{250}{300}$

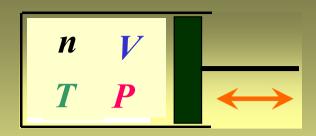
via oxidative phosphorylation

BY MITOCHONDRIA

INTERNAL RESPIRATION

PLAN

- **I BASIC PHYSICAL FEATURES OF GASES**
 - II AIR PASSAGES
 - III MEASURABLE PARAMETERS
 - DEAD SPACE
 - LUNG VOLUMES
 - FUNCTIONAL INVESTIGATIONS
 - CHARACTERISTIC PRESSURES
 - IV COMPOSITION OF ALVEOLAR AIR
 - V ALVEOLAR-CAPILLARY MEMBRANE


GENERAL CHARACTERISTICS OF GASES

- RAPID PRESSURE EQUILIBRATION in the closed volume
- MOVEMENT proceeds from the areas of high pressure to the areas of low pressure -DOWN THE PRESSURE GRADIENT
- Diffusion of a gas ACROSS a BARRIER (between two areas) depends on the PROPERTY of the barrier

IN A MIXTURE OF GASES

- RATE of DIFFUSION of GAS COMPONENTS depends on the INDIVIDUAL PARTIAL PRESSURE GRADIENTS
- In a mixture of gases **EQUILIBRATED WITH A LIQUID** each component **DISSOLVES** independently in proportion to its:
 - **O PARTIAL PRESSURE** in the gaseous phase
 - SOLUBILITY in the fluid

RELATIONS BETWEEN MEASURED QUANTITIES

IDEAL GAS EQUATION

$$P = \frac{nRT}{V}$$

$$PV = nRT$$

If n and T do not change then

$$PV = constant$$

physical unit of work and energy **J**

PARTIAL PRESSURES IN A MIXTURE OF GASES

Dalton's law - law of partial pressures

Mixture of two gas components (in a given volume)

 n_1 , n_2 - amounts of gas substances $\Rightarrow n_{tot} = n_1 + n_2$

$$F_1 = \frac{n_1}{n_{tot}}, \qquad F_2 = \frac{n_2}{n_{tot}}$$
 $F_1 + F_2 = 1$

According to Dalton's law:

PARTIAL PRESSURES can be expressed in terms of fractions:

$$P_1 = F_1 P_{tot} \qquad P_2 = F_2 P_{tot}$$

$$|P_1| + P_2| = P_{tot}$$

COMPOSITION OF DRY ATMOSPHERIC AIR

$$O_2$$
 20.98 % $F_{O2} \cong 0.21$
 N_2 78.06 % $F_{N2} \cong 0.78$
 CO_2 0.04 % $F_{CO2} = 0.0004$

other constituents

BAROMETRIC (ATMOSPHERIC) PRESSURE AT SEA LEVEL 1 atmosphere = 760 mm Hg

PARTIAL PRESSURES OF GASES IN DRY AIR AT SEA LEVEL

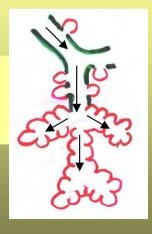
$$P_{O2} = 760 \text{ x } 0.21 = 160 \text{ mm Hg}$$
 $P_{N2} = 760 \text{ x } 0.78 = 593 \text{ mm Hg}$
 $P_{CO2} = 760 \text{ x } 0.0004 = 0.3 \text{ mm Hg}$

I PHYSICAL FEATURES OF GASES

- **II AIR PASSAGES**
 - III MEASURABLE PARAMETERS
 - DEAD SPACE
 - LUNG VOLUMES
 - FUNCTIONAL INVESTIGATION
 - CHARACTERISTIC PRESSURES
 - IV COMPOSITION OF ALVEOLAR AIR

 V ALVEOLAR-CAPILLARY MEMBRANE

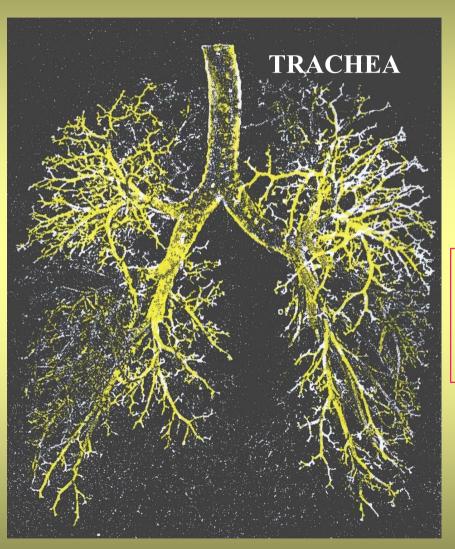
AIR PASSAGES


ANATOMICAL DEAD SPACE - CONDUCTING ZONE

- NASAL PASSAGES
- PHARYNX
- LARYNX
- TRACHEA
- BRONCHI
- BRONCHIOLES
- TERMINAL BRONCHIOLES
- TRANSITIONAL ZONE
 - RESPIRATORY BRONCHIOLES
 - ALVEOLAR DUCTS

Other functions:

- air is warmed, cleaned and takes up water vapour
- respiratory reflex responses to the irritants
- speech and singing (special function of larynx)

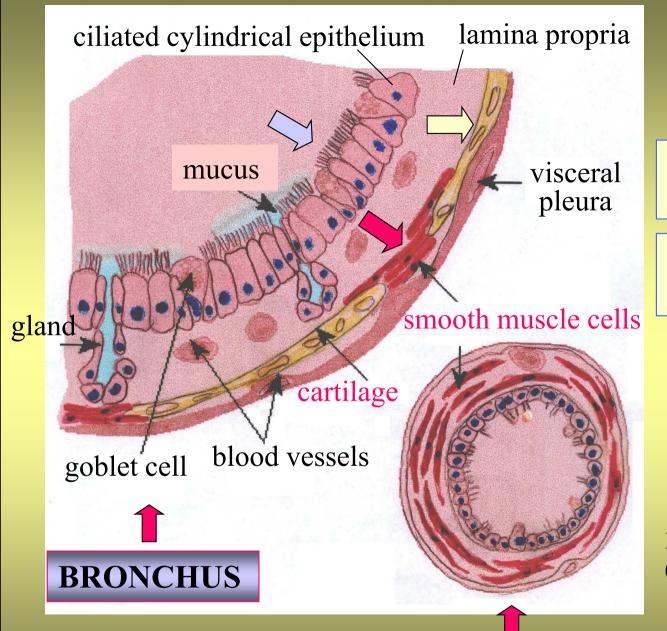


RESPIRATORY ZONE

TOTAL ALVEOLAR VOLUME at the end of quiet expiration ~3 l

TOTAL AREA $\sim 100 \text{ m}^2$

CAST OF HUMAN AIR PASSAGES



BRONCHI

BRONCHIOLES

TERMINAL BRONCHIOLES

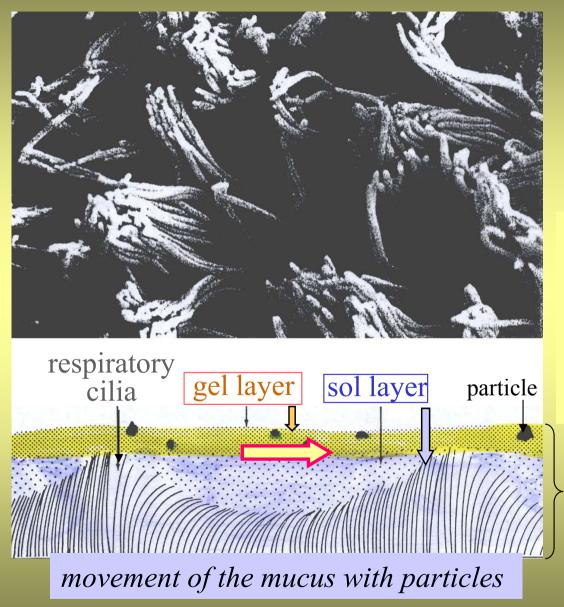
AERODYNAMIC RESISTENCE

AUTONOMIC INNERVATION of smooth muscle cells

muscarinic receptors
activation ⇒ bronchoconstriction

 β_2 -adrenergic receptors activation \Rightarrow bronchodilatation

BRONCHIAL TONE DURING RESPIRATION


INSPIRATION - bronchodilatation (sympathetic discharge prevails)

EXPIRATION - bronchoconstriction (parasympathetic discharge prevails)

TERMINAL BRONCHIOLE

 \emptyset < 1 mm

MUCOCILIARY CLEARANCE

CHRONIC BRONCHITIS

CYSTIC FIBROSIS

mucoviscidosis

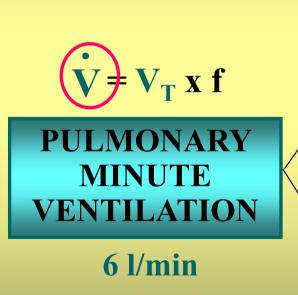
Complex genetic disorder ⇒
reduction of the sol layer mainly
due to the defective Cl channels in
apical membrane of epithelial cells
(CFTR - Cystic Fibrosis Transmembrane
conductance Regulator).

10-20 µm

COLLOID SOLUTIONS WITH DIFFERENT VISCOSITY

- I PHYSICAL FEATURES OF GASES
- II AIR PASSAGES
- **III** MEASURABLE PARAMETERS
 - DEAD SPACE
 - LUNG VOLUMES
 - FUNCTIONAL INVESTIGATION
 - CHARACTERISTIC PRESSURES
 - IV COMPOSITION OF ALVEOLAR AIR

 V ALVEOLAR-CAPILLARY MEMBRANE


$$V_T$$
 tidal volume ~ 500 ml

$$\mathbf{V}_{\mathbf{T}} = \mathbf{V}_{\mathbf{A}} + \mathbf{V}_{\mathbf{D}}$$

 V_A part of tidal volume entering alveoli ~ 350 ml

 V_D part of tidal volume <u>remaining</u> in the dead space ~ 150 ml

f = 12/min

$$\dot{\mathbf{V}}_{\mathbf{A}} = \mathbf{V}_{\mathbf{A}} \mathbf{x} \mathbf{f}$$

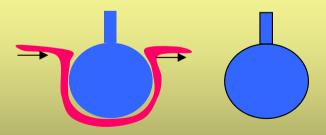
ALVEOLAR VENTILATION

4.2 l/min

$$\dot{\mathbf{V}}_{\mathbf{D}} = \mathbf{V}_{\mathbf{D}} \times \mathbf{f}$$

DEAD SPACE VENTILATION

1.8 1/min

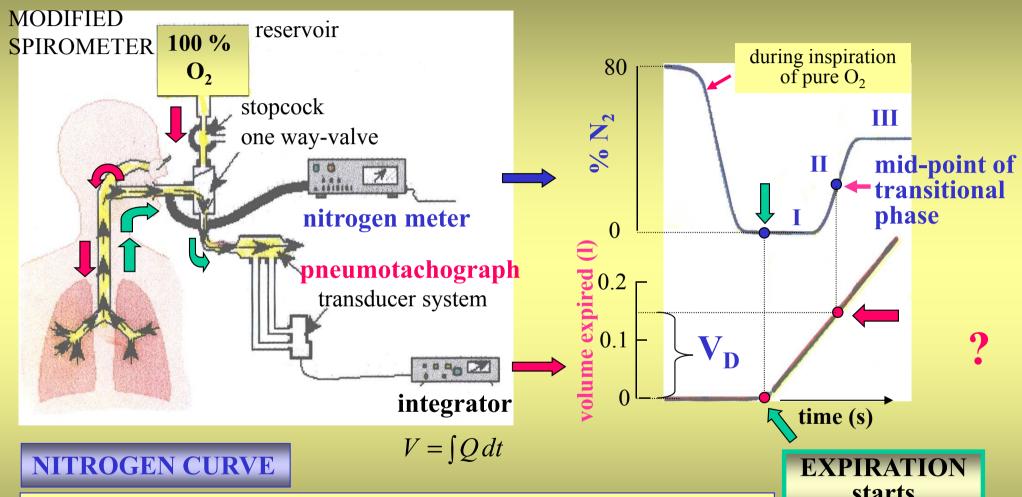

At the same PULMONARY VENTILATION (6 l/min) ALVEOLAR VENTILATION at RAPID SHALLOW BREATHING can be SIGNIFICANTLY REDUCED and INADEQUATE in comparison with SLOW DEEP BREATHING

DEAD SPACE IN RESPIRATORY SYSTEM

TOTAL GAS VOLUME NOT EQUILIBRATED WITH BLOOD (without exchange of gasses)

- ANATOMICAL dead space volume of air passages
- FUNCTIONAL (total) dead space

ANATOMICAL dead space + total VOLUME of ALVEOLI without functional capillary bed

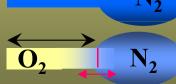


IN HEALTHY INDIVIDUALS

both spaces are practically identical

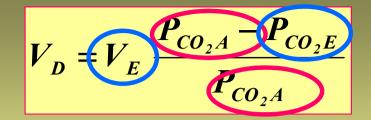
ANATOMICAL DEAD SPACE MEASUREMENT

(single breath N₂ test)



Phase I — expired air with pure O_2

Phase II - transitional phase (mixture of gasses due to diffusion)


Phase III - alveolar phase (alveolar air with decreased value of N₂)

ANATOMICAL DEAD SPACE

BOHR'S EQUATION

V_E expired tidal volume in reservoir

$$P_{CO2} = F_{CO2} \cdot P_{total}$$

 $P_{CO2\ E}$... partial pressure of CO_2 in expired air (in reservoir)

 P_{CO2A} ... partial pressure of CO_2 in alveolar part of expired air

 P_{CO2A} can be measured in the last 10 ml of the expired gas

?

$$V_E = V_D + V_A$$

$$P V = n R T \qquad \qquad n_{CO2} \sim P_{CO2} V$$

$$n_{CO2E} = n_{CO2D} + n_{CO2A} \qquad \qquad \dots$$

FUNCTIONAL (TOTAL) DEAD SPACE

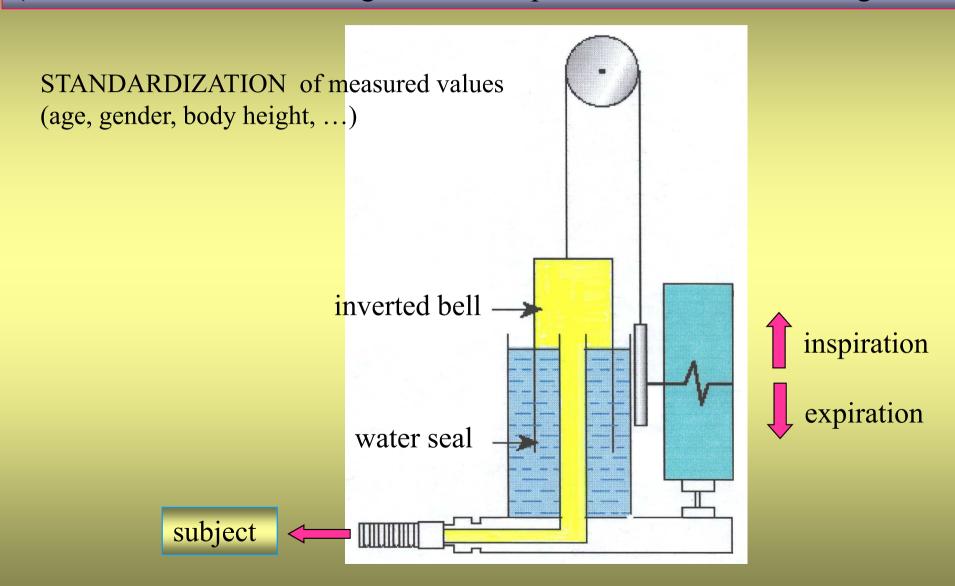
BOHR'S EQUATION

$$V_D = V_E \frac{P_{CO_2a} - P_{CO_2E}}{P_{CO_2a}}$$

FUNCTIONAL DEAD SPACE is obtained if alveolar P_{CO2A} is replaced by arterial partial pressure P_{CO2A}

$$P_{CO_2a} \geq P_{CO_2A}$$

HELTHY SUBJECTS - both *partial pressures* are nearly identical ⇒ **FUNCTIONAL** dead space equals **ANATOMICAL** dead space


RESPIRATORY DISEASES - numerous alveoli are without *functional capillary bed* $\Rightarrow P_{CO2A} < P_{CO2}$ a

- I PHYSICAL FEATURES OF GASES
- II AIR PASSAGES
- III MEASURABLE PARAMETERS
 - DEAD SPACE
 - LUNG VOLUMES
 - FUNCTIONAL INVESTIGATION
 - CHARACTERISTIC PRESSURES
- IV COMPOSITION OF ALVEOLAR AIR

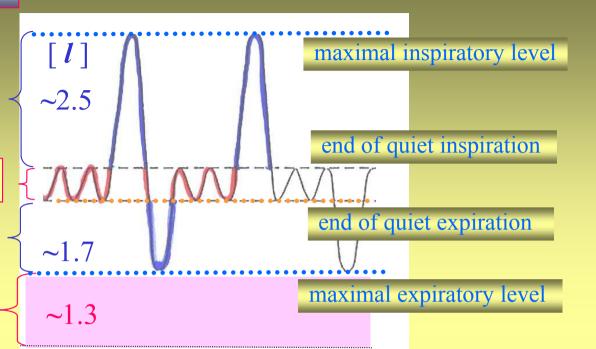
 V ALVEOLAR CARLLARY MEMBRANE
- V ALVEOLAR-CAPILLARY MEMBRANE

SPIROMETRY

(direct measurements of lung volumes, capacities, functional investigations, ...)

LUNG VOLUMES

INSPIRATORY
RESERVE VOLUME *IRV*

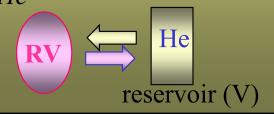

TIDAL VOLUME V_T

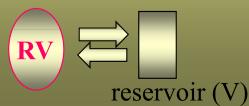
EXPIRATORY RESERVE VOLUME *ERV*

RESIDUAL VOLUME RV

DILUTION METHOD

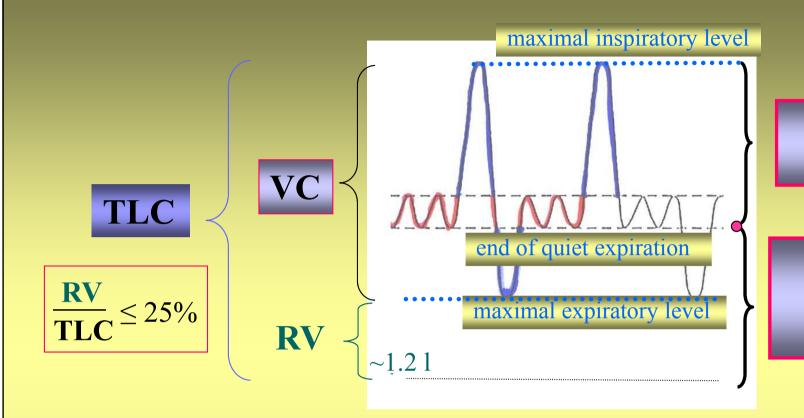
He


$$RV = V_{v} \begin{array}{c} c_{iHe} - c_{fHe} \\ c_{fHe} \end{array}$$


n = c V

 V_r)....reservoir volume

 $c_{i He}$...known initial concentration of He


 c_{fHe} ...final measured concentration of

$$n_{RVHe} \neq n_{i,rHe} - n_{f,r}$$

(difference between initial and final amounts of *He* in reservoir)

INSPIRATORY CAPACITY

>3.01

FUNCTIONAL RESIDUAL CAPACITY

< 3.01

VC

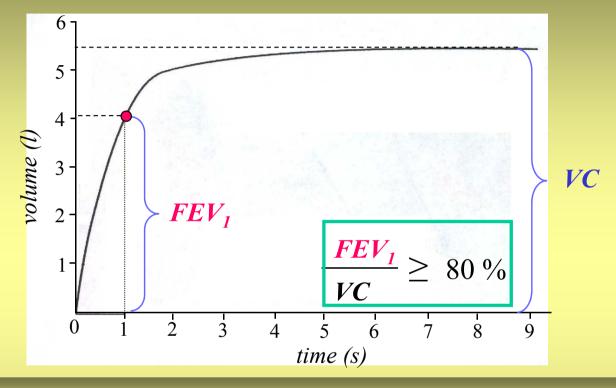
VITAL CAPACITY = $V_T + IRV + ERV$

 ~ 4.71

The largest amount of air that can be expired after maximal inspiration

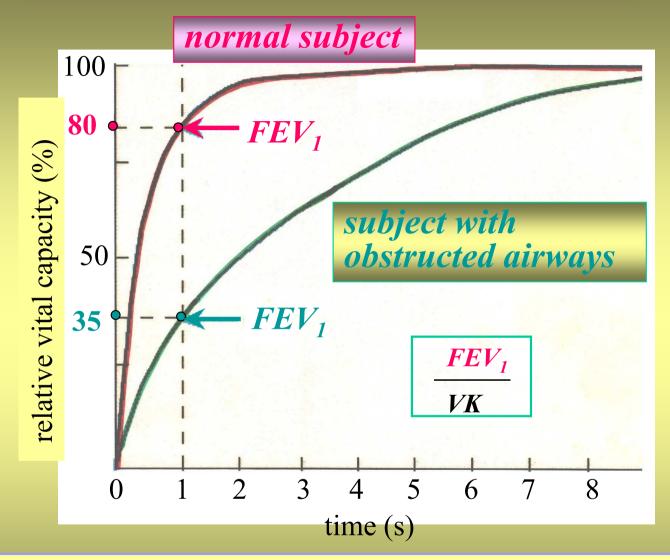
TLC

TOTAL LUNG CAPACITY = VC + RV

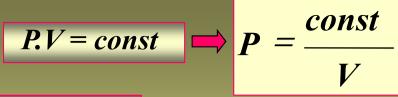

 ~ 6.01

- I PHYSICAL FEATURES OF GASES
- II AIR PASSAGES
- III MEASURABLE PARAMETERS
 - DEAD SPACE
 - LUNG VOLUMES
 - FUNCTIONAL INVESTIGATION
 - CHARACTERISTIC PRESSURES
- IV COMPOSITION OF ALVEOLAR AIR

 V ALVEOLAR-CAPILLARY MEMBRANE


FUNCTIONAL INVESTIGATION OF THE LUNGS

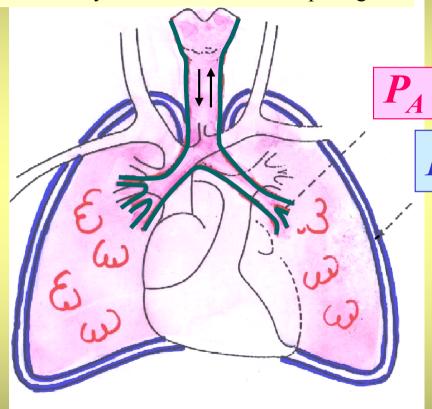
• TIMED VITAL CAPACITY (FEV_1 - forced expiratory volume per 1 s)


- PULMONARY VENTILATION RMV (respiratory minute volume) (0.5 1 x 12 breathes/min = 6 l/min)
- MAXIMAL VOLUNTARY VENTILATION (MVV) during time interval 10 s (125-170 l/min)
- PEAK EXPIRATORY FLOW RATE (*PEFR*) measured by means of pneumotachograph (~10 *l/s*)

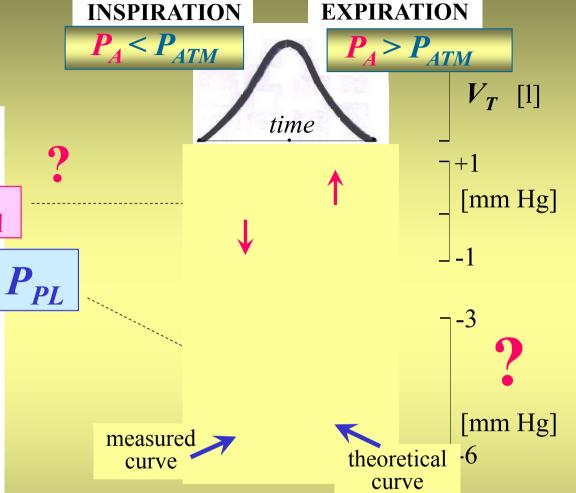
TIMED VITAL CAPACITY FEV,

TIMED VITAL CAPACITY enables to distinguish **RESTRICTIVE disorders** (e.g. pulmonary fibrosis) from **OBSTRUCTIVE disorders** with increased airway resistance (e.g. asthma bronchial).

- I PHYSICAL FEATURES OF GASES
- II AIR PASSAGES
- III MEASURABLE PARAMETERS
 - DEAD SPACE
 - LUNG VOLUMES
 - FUNCTIONAL INVESTIGATION
 - CHARACTERISTIC PRESSURES
- IV COMPOSITION OF ALVEOLAR AIR
- **V** ALVEOLAR-CAPILLARY MEMBRANE


 $\Delta P = Q.R$

POISEUILLE'S LAW


Q ... flow rate

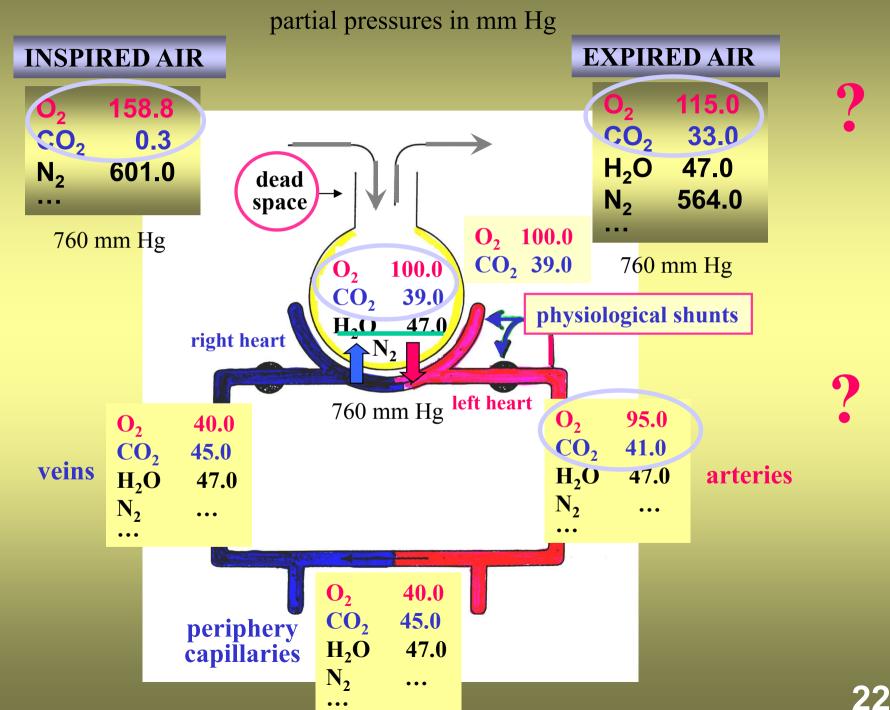
analogy to Ohm's law

R... aerodynamic resistance of air passages

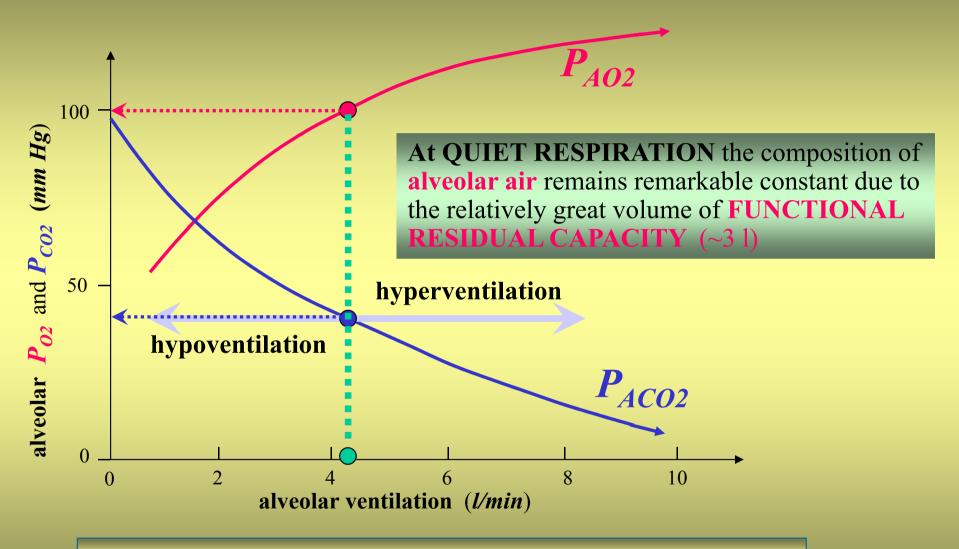
TIME COURSES OF PRESSURES at quiet respiration

 P_A ALVEOLAR (INTRAPULMONARY, LUNG)

$$P_{TP} = P_A - P_{PL}$$


 $\overline{P_{PL}}$

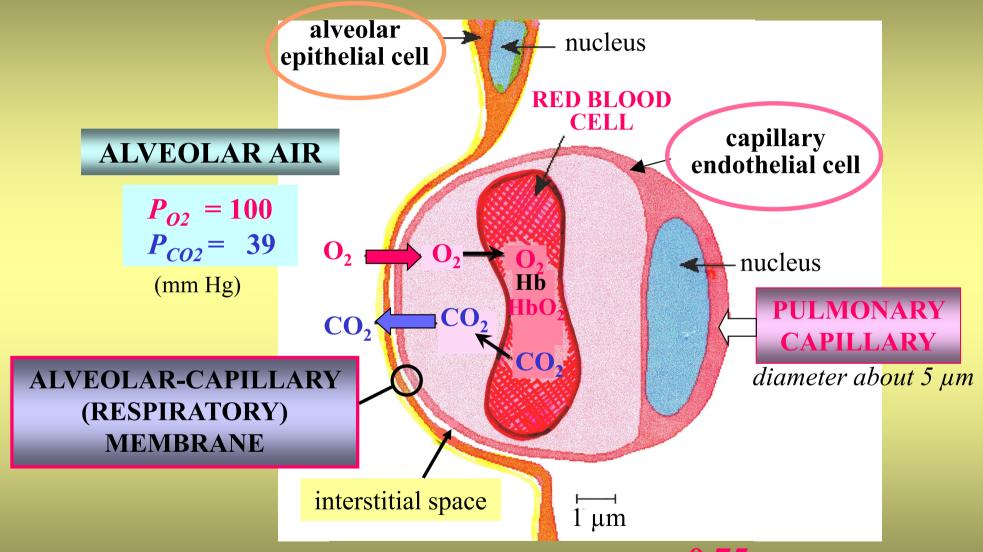
INTRAPLEURAL (INTRATHORACIC)


TRANSPULMONARY

- I PHYSICAL FEATURES OF GASES
- II AIR PASSAGES
- III MEASURABLE PARAMETERS
 - DEAD SPACE
 - LUNG VOLUMES
 - FUNCTIONAL INVESTIGATION
 - CHARACTERISTIC PRESSURES
- → IV COMPOSITION OF ALVEOLAR AIR
 V ALVEOLAR-CAPILLARY MEMBRANE

COMPOSITION OF ALVEOLAR AIR

Alveolar P_{02} and P_{co2} at voluntary hypo- and hyperventilation



hyperventilation \rightarrow hypocapnia \rightarrow respiratory alkalosis

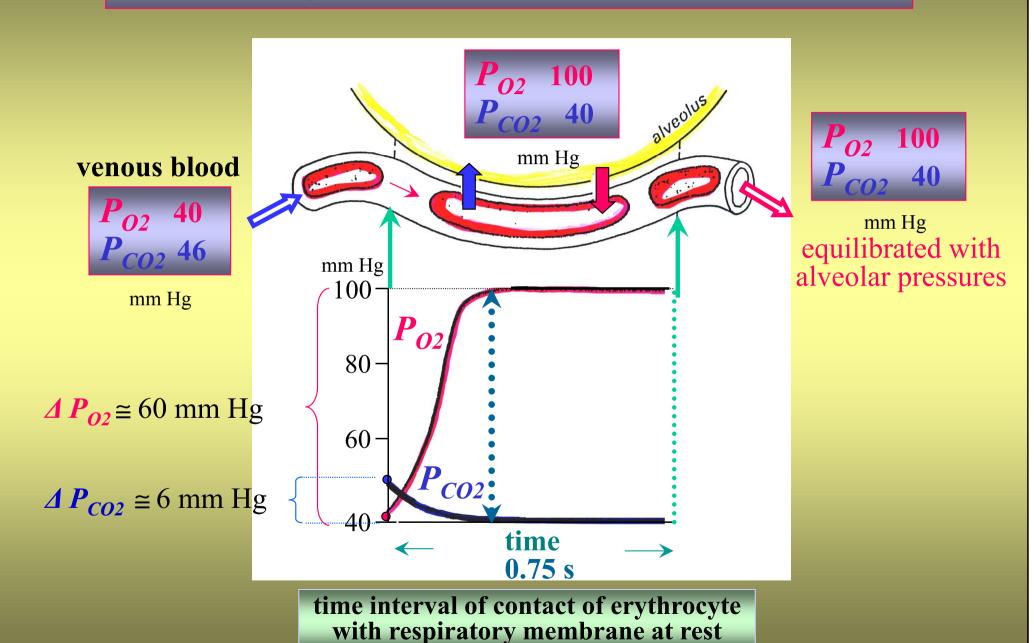
hypoventilation \rightarrow hypercapnia \rightarrow respiratory acidosis

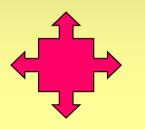
- I PHYSICAL FEATURES OF GASES
- II AIR PASSAGES
- III MEASURABLE PARAMETERS
 - DEAD SPACE
 - LUNG VOLUMES
 - FUNCTIONAL INVESTIGATION
 - CHARACTERISTIC PRESSURES
- IV COMPOSITION OF ALVEOLAR AIR
- **► V** ALVEOLAR-CAPILLARY MEMBRANE

DIFFUSION OF GASES ACROSS RESPIRATORY MEMBRANE

0.75 s

time interval of erythrocyte contact with respiratory membrane at rest


FACTORS AFFECTING RATE OF DIFFUSION OF GASE IN THE LUNGS (O₂ or CO₂)


FICK'S LAW - LAW OF DIFFUSION

$$\dot{V} = \frac{k_D A}{l} \left(P_A - P_c \right) \quad (ml/min)$$

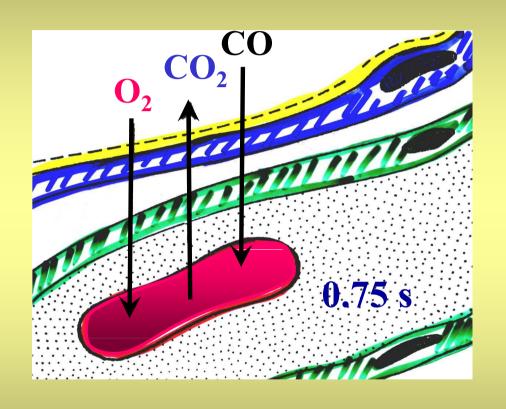
- TOTAL SURFACE AREA OF THE ALVEOLAR-CAPILARY MEMBRANE A (~ 100 m²) (\$\darksquare A : emphysema)
- DIFFUSION DISTANCE THICKNESS OF THE BARRIER l (~1 μm) (↑ l : inflammation, pulmonary edema)
- PARTIAL PRESSURE DIFFERENCE $(P_A P_c)$
- DIFFUSION COEFFICIENT OF THE GAS k_D determined by molecular mass, solubility of the gas in the respiratory membrane ($\downarrow k_D$: pulmonary fibrosis).

TIME COURSES OF CAPILLARY P_{02} AND P_{CO2} DURING EQUILIBRATION WITH ALVEOLAR AIR

DIFFUSING CAPACITY OF THE LUNGS D_L

$$D_{L} = \underbrace{V_{gas}}_{P_{A} - P_{c}} \quad \begin{bmatrix} \frac{ml / min}{mm \ Hg} \end{bmatrix}$$

$$\dot{V} = \frac{k_D A}{l} (P_A - P_c) \Longrightarrow D_L = \frac{k_D A}{l}$$


 V_{gas} — flow of the gas (ml/min)

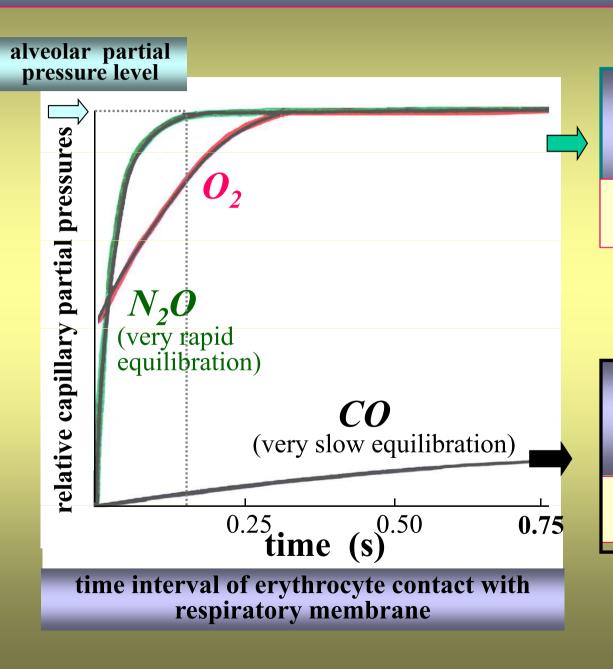
P_A- **P**_c – partial pressure difference (DRIVING FORCE FOR DIFFUSION)

INDEX OF DIFFUSING CAPACITY

Gas CO is suitable for measurement of D_L because P_{CO} in plasma is negligible. P_{ACO} and the decrease in amount of CO per unit of time in alveoli are measured (\dot{V}_{CO}) .

$$D_{LCO} \approx \dot{V}_{CO}/P_{ACO}$$

 $D_{LCO} \approx 17 \ ml/min/mm Hg$


 $D_{LO2} \approx 21 \, ml/ \, min/ \, mm \, Hg$

 D_{LO2} increases during exercise ($\uparrow \dot{V}_{O2}$) and is reduced in pulmonary diseases ($\downarrow A$, $\uparrow l$)

 $D_{LCO2} \gg D_{LO2}$

 $k_{DCO2} \gg k_{DO2}$

EQUILIBRATION OF O_2, N_2O , AND CO PARTIAL PRESSURES IN CAPILLARY BLOOD WITH ALVEOLAR PRESSURES

N₂O (nitrous oxide) INERT GAS

used for cerebral and coronary blood flow measurements

CO (carbon monoxide)

AVIDLY BOUND IN ERYTHROCYTE

used for assessment of diffusing capacity of the lungs D_L

FICK'S LAW OF DIFFUSION

END