Endodontics

Endodontics - terms

- Endodont (dentin + pulp)
- Pulp chamber
- Root canal
- Apical constriction
- Apical foramen
- Ramifications
- Radiographic apex
- Periodontal space

Morphology

➤ The root canal is not round it is usually oval (long axis mesiodistal direction)

➤ The root canal is not straight - it deflects distal

➤ Apical foramen is not on the top of the root but under it (distal or distooral side)

Morphology

- Between apical constriction and apical foramen the wall of root canal are divergent towards periodontal space
- ➤ The root canal system has usually more foramina (ramifications)
- The ramifications are situated mostly in apical area (first apical mm)
- > All apical foramina are situated in cementum

Apical morphology

- 1. Rtg apex
- 2. Foramen apicale
- 3. Apikální konstrikce
- 4. Periodoncium
- 5. Cement
- 6. Dentin

Phases of the endodontic treatment

- Investigation, diagnostic radiogram, consideration (local, regional, systemic factors)
- Removal of old fillings, carious dentin, temporary restoration – rubber dam.
- Dry operating field
- Preparation of the access (endodontic cavity)

Phases of the endodontic treatment

- Opening of root canals
- Initial flaring and removal of content of root canal
- WL (working length)
- Root canal shaping and cleaning (irrigation)
- Recapitulation, final irrigation
- Drying
- Filling
- Radiogram
- Postendodontic treatment

Shapes of endo cavities

Number of root canals

Access

Instruments

Dia trepan

Dia balls

Ball burs

Preparation of the endodontic cavity

Dia trepan

Safe ended tips Batt's instruments

Fissur bur

Endodontic probes

Endodontic probes, microopeners

Ultrasound tips

Dye

Opening of root canals

Ball burs

Miller's burs

Gates Glidden's burs

Peeso – Largo burs

Opening of the root canal

<u>Insertion of root canal instrument after opening the pulp chamber and root canal orifice</u>

Access cavity

Incorrect Correct

Soft wire
Prickles like harpune
Insertion
Contact with root canal wall – pull 1 mm
Rotation
Exstirpation during pull motion

Canal shaping

Reamers (penetration)

> Files (shaping)

Reamer

K -reamer Triangl or square wire spun

Symbol

Parts of root canal instranents

Reamer

Rotation (clockwise) - penetration

Application of plastic material (contraclockwise)

Files

- 1. K-file
- 2. K-flexofile, flexicut, flex-R file
- 3. K-flex
- 4. H-file, S-file

K file

Wire triangl or square

Symbol is always square

K-file

Filing Also rotation 45°-90°

K-flexofile, flexicut, flex-R

Triangle wire always

K- flexofile a flex – R file: non cutting tip and first blades are blunt

Like K-file

K-file and reamer

H-file

= Hedstroem file

Ring

H- file

No rotation!!

Pull motion only!!

Risk of breakage in small sizes

ISO

- ➤ Diameter of the tip
- ➤ Length of the cutting part
- **≻**Taper

Size – diameter at the tip in mm/100

 $d_1 - d_2 = 16 \text{ mm}$

$$d_2 = d_1 + 0.32$$

The diameter increases for 0,02 mm On 100 length

Working length

Distance between the referential point and apical constriction

- Radiographically
- Apexlocators
- Combination

Why apical constriction

- Small apical communication
- Minimal risk of damage of periodontium
- Prevention of overfilling (extrusion of filling material)
- Prevention of extrusion of infection
- Good decontamination
- Godd condition for root canal filling

Radiogram

X-ray with inserted root canal instrument

Safe length: average length of teeth reduced for 2 – 3mm

Tooth with clinical crown

Procedure

- Instrument ISO 15 introduced into the root canal, stop at the referential point
- Estimation of location of apical constriction (1
 - 1,5 mm distance from x-ray apex.

If there is diference in the radiogram more than 2 mm - repeat

If 2 mm or less – add to the safe length

= working length

Safe length

Maxilla:

I1 20

12 18

C22-24

P20

M 18 mkk,20 P

Safe length

Mandible

118

C20 -22

P18

M18

Remember- the length is for teeth with complete crown !!!

Endometry, odontometry

Endometry

devices based on measurement of electrical resistance

Apexlocator:

Irrigation

- Sodium hypochlorite (1,5 6%)
- Chlorhexidin (0,12% 0,2%)
- EDTA etyléndiaminotetraacetic acid 17%

Sodiumhypochlorite

$$2 - 6\%$$

- Oxidation a chloration
- Dissolving efect (dissolvs organic material biofilm, rests of dental pulp)
- Bad smell, irritation of soft tissues.

Chlorhexidine

0,12 % - 0,2%

- Antimicrobial effect long term
- Do not dissolve smear layer
- Improves stability of biofilm

EDTA

17%

Dissolves inorganic material (chelator)
Important part of irrigation protocols

Irrigation protocols

Combination of irrigants and their activation

Syringe and cannula

• Blunt, side apertures, smallest ISO 35

No pressure

Activation of irrigation

Increased effectivity

Vibration – movement of liquid

Increasing of temperature of irrigants

Decomposition of irrigants – dissociation (dute to heating)

Rotation – 45° clockwise and contraclockwise

K – reamer

K- file

Rotation clockwise 45° pressure and pull motion

K – reamer

K- file

Risk of ledging Zip, elbow effect Via falsa

 Filing – circumferential filing (filing along root canal walls – circumferentially)

H- file

K – file

Risk of periapical infection infection Risk of plug

Balanced force

Balanced force

- Insert instrument one size bigger than apical size rotating 90° - 180° clockwise
- With slight pressure forward rotate 180°-270°contraclockwise – dentinchips are cut
- Pull the instrument out (dentin chips are beibg transported out) – rotate 108°-360°clockwise

Methods of shaping

Combination of rotation and filing

K - reamer

H- file

Or K-file

Start with rotation

Finishing with filing

Suitable for straihgt root canals

Methods of shaping

Step back method

Increasing size with decreasing length.

Insertion of root canal instrument – WL

Next – 1 mm shorter

• • •

Taper
Final flaring with
the smallest instrument

H- File nebo K - Flexofile.

Prevention of extrusion of filling

Good for curved root canals

- rigidity of instruments
- is increaseing with increasing size

Method modified double flaerd

- I. Opening of root canal
- Coronal third
- II. Apical preparation

Cathetrization, measurement, shaping till ISO 30 - 35 using balanced force. Master file – MAF (last instrument inserted to WL)

- III.Step back
- 3 -4times
- Final flaring (MAF)

Root canal filling

Good coronal, Middle Apical seal.

> Quality guidelines for endodontic treatment, European Society of of Endodontology (ESE), 1994

Ideal root canal filling (Grossman 1988)

- 1. Easy mixing
- 2. Sufficient working time
- 3. Good seal
- 4. X- ray contrast
- 5. Easy removal
- 6. No shrinkage
- 7. Long term volume stability
- 8. No bacterial growing
- 9. No permeability for fluids
- 10. Biocompatibility
- 11. No staining

Classification of root canal fillings

> Solid

> Semisolid

→ Pastes

Guttapercha

Dried juice of the Taban tree (Isonandra percha) (gutta)

1,4 - polyisoprene

Crystallin structure (60%)

Brittle

Guttapercha

Beta phase

- Alpha phase 42 49 °C
- plastic
- **Gamma phase** 56 62° (amorfní)

Cooling process

very slowly (less than 0,5°C) – alpha phase normal cooling– beta phase

Composition of guttapercha materials in endodontic

Guttapercha 19% – 22%

Zinc oxide 59 - 79%

Heavy metal salts 1% - 7%

Wax or resin 1% - 4%

Resilon (Pentron)

- > Thermoplastic synthetic polymer
- Points or material for injection

Composition: Polyester polymers Bioactive glass Radioopaque fillers (bismuthum oxichlorid a and baryum sulphate)

Silver or titanium cones

➤ No good seal

➤ Silver cones - corrosion

Sealers

<u>Chemically curing materials</u>
(their consistency is paste, cements)

Good adhesion to root canal walls as well as solid cones

X- ray contrast

Biocompatibility

Sealers

Importance

Filling of the spaces between the solid cones

Seal of the root canal filling

Sealers

Zinc Oxide-Eugenol

Chloropercha

Calciumhydroxide

Resins

Glasionomer

Silicone

Zinc - Oxid Eugenol

Powder:

Zinc oxide

Liquid:

Eugenol

Acidic resins

Good adhesivity, antimicrobial effect, cytotoxicity?

Resorbable, no compatible with adhesive materials)

Zink Oxid Eugenol sealers

Pulp Canal Sealer (Kerr, USA))

Tubuli- Seal (Kerr, USA)

Caryosan (Spofa Dental, ČR)

Calciumhydroxide sealers

Base (powder)

Calcium hydroxide

Zinc oxide

Other components and vehicula

Calcium hydroxide sealers

Catalyst (paste)

Zinc stearat

Titanium dioxide

Baryum sulphate

or

Eugenol,. Eukalypt

Other components...

Kalciumhydroxide sealers

> Increase of the healig potential of periapical tissues

> Antibacterial effect

Easy manipulation

But!

Resorbable if not homogeneus

Not suitable for the single cone technique

Resins

> Rezorcin formaldehyd (toxic, obsolete)

≻ Epoxide

➤ Polyketone

➤ Metacrylate

Epoxide resin

➤ Base (powder, paste)

Bismuth oxid

Titanium dioxide

Hexametylentetramine

(Silver)

Catalyst (liquide, paste)

Bisphenoldiglycidylether

Epoxid resin (advantages)

- Long working time
- Hydrophilic (good penetration)
- ➤ Good adhesion to the root canal walls
- ➤ Volume stability
- ➤ No dissolution
- > Antibacterial

Epoxid resins (disadvantages)

Difficult removal

Staining

> Initiatiory toxicity

AH 26, AH Plus, 2 Seal

Polyketone

Base

Zinc oxide

Bismuth phosphate

Hexametylentetramine

> Liquid

Bisphenolglycidylether and other components

Polyketon resins

Advantages
Good adhesion
No contraction
No dissolution

<u>Disadvantages</u>

High stickness

Not removable

Products: Diaket, Diaket A (3M ESPE)

Methacrylate resins

Endo ReZ (Ultradent) – UDMA

For injection – single cone technique

Epiphany (Pentron)

Bis- GMA, etoxy bif- GMA, hydrophilic bifunctional methacrylates

Calcium hydroxide, baryum sulphate, baryum glass silica.

Sealer in combination with Resilon

Glasionomer sealers

➤ Base (powder)
Aluminium silicate glass

≻Liquid

Polyacrylic acid, polymaleic acid, tartaric acid

Glasionomer sealers (Advantages and disadvantages)

Advantages:

Curing under wett conditions, chemical bonding to hard dental tissues, no staining

<u>Disadvantages</u>

Short working time, difficult removal, porous

Products

Ketac Endo (3M ESPE), Endion (VOCO)

Silicon based sealers

Polyvinylsiloxane (ev. in mixture with powdered guttapercha

Biocompatibility Hydrofillic

Instruments

Paste carries - lentulo

Compactors

Compactors - carriers

Others

Lentulo

- >delivers pastes
- \gg ,5 2 mm ahead
- > for sealers

Compactors

Spreader

Pointed

Vertical introduction

Lateral compaction technique (cold, warm)

Compactors

Plugger

Not pointed

Vertical introduction

Vertical - compaction

Use of a selected Plugger to ensure homogeneity of the filling.

Filling techniques

Cold

Warm

Paste only

Shrinkage, difficult removal

Single cone technique

- Easy
- Fast

- Good control of WL
- Standard round preparation risk of leakage

Wesselink, P.: Root filling techniques, Textbook of Endodontology; p. 286-299, Blackwell Munksgaard 2003, Oxford

Lateral compaction

Standard cold technique

Good control of WL Risk of the root fracture

LATERAL CONDENSATION (compaction)

Lateral Condensation

A sealer is placed in the canal followed by a fitted gutta percha Master Point compacted laterally by a tapering Spreader to make room for additional accessory points

Complications of endodontic treatment

Local
Regional
Systemic

Local complications

Plug

Solution

Repeated careful instrumentation with a thin instrument

Irrigation is not effective in this case!!!

Ledging

Reasons

The instrument is not bended in advance!

No control of the WL

_

No recapitulationLoss of the WL

Solution

The instrument must be bended in advance

Careful but complete rotation

Finishing with the fine filing

No NiTi!!!

Zipping a Elbow

The instrument is not bended in advance!

Rotation in curved canals

Stripping

Reasons

Bad orientation in morphology — no diagnostic x-Instruments are nod bended Rotary NiTi with a big taper

Dangereous zones Mandibular molars – mesial roots

Premolars, esp. maxillar Mandibular incisors

Oblast isthmu

Stripping

Stripping

Bend the instrument and eventually blunt it!

Fracture of the root canal instrument

Insufficient coronal flaring

Old root canal instrument

Aggresive force

Incorrect movement of the root canal instrument

Solution

Enlargement of the root canal till the instrument

Ultrasound tips

Rotating root canal instrument – caution!

Bypass

Leaving in

Surgical treatment

Bypass

Fractured instrument

Via falsa

 Perforation of the bottom of the pulp chamber or the coronal part of the root canal

Perforation in the middle part of the root canal

Apical perforation

Regional complications

Damage of periodontium or surrounding tissues

Píštěl

Systemic complications

Systemic complications

> Periostitis

> Inflammation of soft tissues (face, neck)

➤ Gulp of the instrument (X ray, remnant diet, information)- cough

➤ Aspiration of the instrument -emesis

Caution!

Always find the loss instrument !!!!!!

Safe work in endodontics

Rubber dam

Glassses