Tissue concept and classification

Petr Vaňhara, PhD

Department of Histology and Embryology, Faculty of Medicine MU

pvanhara@med.muni.cz

How the variability of a multicellular body develops?

- Tissues and organs
- 6×10^{13} CELLS of 200 different types
- cells form functional, three-dimensional, organized aggregations of morphologically similar cells and their products or derivatives - TISSUES
 tissues constitutes ORGANS and organ systems

En

Myocardium

Tissues and organs

Parenchyma: functional component of a tissue (liver, lung, pancreatic, kidney parenchyma)

Stroma: surrounding, supportive tissue

LIVER

Parenchyma:

- Hepatocytes
- Sinusoids and adjacent structures

Stroma:

- Connective tissue and adjacent structures
- Vessels
- Nerves
- Bile ducts

Contemporary tissue classification

Based on morphology and function:

Epithelium

Muscle

Continual, avascular layers of cells with different function, oriented to open space, with specific junctions and minimum of ECM and intercellular space.

Derivates of all three germ layers

Myofibrils → contraction Mesoderm – skeletal muscle, myocard, mesenchyme – smooth muscles

Rarely ectoderm (eg. m. sphincter a m. dilatator pupillae)

Nerve

Neurons and neuroglia Reception and transmission of electric signals Ectoderm, rarely mesoderm (microglia)

Connective

Dominant extracellular matrix Connective tissue, cartilage, bone... Mesenchyme

Basic principles of histogenesis

Functional cells of tissues differentiate from stem cells

Stem cells are capable of differentiation and self-renewal

Stem cells

Totipotent

- Constitute all cells of the body incl. extraembryonic tissues
- Zygote and early stages

- All cells in the body except for trophoblast
- Blastocyst Inner cell mass ICM (embryoblast)
- Embryonic stem cells

http://www.embryology.ch/anglais/evorimplantation/furchung01.html

Stem cells as a foe

Cancer stem cells

- solid tumor is always heterogeneous
- small population of cells with stem cell character can repopulate tumor tissue after cytotoxic therapy

Tissue stem cells

Microenvironment regulates tissue function and reflects its tissue composition

Huge number of **biological** and **physically-chemical** parameters

- Embryonic development
- Intercellular interaction
 - Space organization (dimensionality)
- Gradient of morphogenes
- **Epigenetic profile**
- stem cell niche Gene expression dynamics
 - Partial pressure of gases
 - ECM composition
 - Mechanical stimulation
 - Perfusion and interstitial flows
 - Local immunity response
 - **Metabolites**

Bone

Stem cell niche?

12

17000

HSC11

Construction of the second sec

1

MSC

Bone & Bone Marrow cells Osteoblasts Osteoclasts Osteocytes Adipocytes Fibroblasts Stromal cells Vascular endothelials cells Immune cells Hematopoietic stem cells(HSC) and their differentiated progenies

Mesenchymal stem cells (MSC)

ECM components Fibronectin Laminin Collagens Apatite crystals (calcium 38%, phosphorus 18%) Bone promoting proteins Bone sialoproteins Osteonectin Osteoprotegerin Osteocalcin Integrins Alcaline Phosphatase Proteoglycans, Glycosaminoglycans Osteopontin MMPs & TIMPs Receptors Adhesion molecules

Physico-chemical Effectors

Cytokines Chemokines Growth factors Hormones Physico-mechanical forces Biochemical regulators (pH, oxygen concentration, nutrients...)

Molecular principles of histogenesis

Wild type

Mutant

Hox complex

Human (39 genes) Cluster Chromosome # Hox genes 7 11 HoxA 17 10 HoxB 9 HoxC 12 HoxD 2 9

Microenvironment controls embryonic organogenesis

Apical ectodermal ridge (AER)

Zone of polarizing activity (ZPA)

Manipulation with AER changes the instructions for limb development

Gradients of morphogenes from AER and ZPA defines limb formation

Thalidomid

Histogenesis and organogenesis

Embryonic development

Ectoderm

- Epidermis, hair nails, cutaneous and mammary glands
- Corneal epithelium and lens of eye
- Enamel of teeth
- Internal ear
- Surface ectoderm Anterior pituitary gland
 - Epithelium of oral cavity and part of anal canal

Neural tube and derivatives

- CNS
- **Neuroectoderm** - Retina
 - Posterior pituitary gland
 - Pineal body
 - Neural crest and derivatives:
 - Cranial and sensory ganglia and nerves
 - Schwann cells
 - adrenal medulla
 - Enteroendocrinne cells
 - Melanocytes
 - Head mesenchyme and connective tissue
 - Odontoblasts

Mesoderm

- Connective tissue of head head
 - Cranium, dentin
 - Skeletal muscle of trunk and limbs except cranium
 - Dermis of skin

Paraxial

Intermediate

_ateral

- Muscles of head
- Urogenital system + ducts, glands and gonads
 - Visceral muscle and connective tissue
 - Serous membranes of pleura, peritoneum and pericardium
- Blood cells, leukocytes
- Cardiovascular and lymphatic system
- Spleen
- Adrenal cortex

Endoderm

- GIT epithelium except oral cavity and part of anal canal
- Extramural glands of GIT
- Epithelium of bladder
- Epithelium of respiratory system
- Thyroid gland, parathyroid glands, thymus
- Tonsils
- Epithelium of cavum tympani and Eustachian tube

6. Connective tissue

Not only a tissue glue...

Connective tissue

Mechanical and biological properties

 \rightarrow surrounds other tissues, compartmentalization, support, physico-chemical environment, immunological support, storage

General composition of connective tissue (CT)

Cells and extracellular matrix

Cells

Connective tissue - permanent and transient cell populations (fibroblasts/myofibroblasts,

immune cells, adipocytes, adult stem cells) Cartilage – chondroblasts/chondrocytes Bone – osteoblasts/osteocytes/osteoclasts

Matrix – fibrous and amorphous

Fibrous component

- collagen
- reticular
- elastic

Amorphous component (amorphous ground substance)

- Complex matrix consisting of glycosaminoglycans, glycoproteins and proteoglycans,

depending on tissue type (connective \times ligament \times cartilage \times bone)

Classification of CT

Embryonic CT

- Mesenchyme
- Jelly-like CT (Wharton jelly, dental pulp, stroma of iris)

Embryonic origin of CT

- Mesenchyme = loose tissue between germ layers
- Complex network of star- or spindle-shaped cells
- Jelly-like amorphous ground substance

Week 3 of embryonic development

Basic derivatives of CT

Cells of connective tissue

Cells

- Fibroblasts/fibrocytes/myofibroblasts
- Heparinocytes
- Macrophages of CT = histiocytes
- Plasma cells
- Lymphocytes
- Adipocytes
- Adult stem cells

Extracellular matrix

- Fibrous compound
- Amorphous ground substance

Cells of connective tissue Mesenchymal (adult) stem cells

Extracellular matrix – fibrous component

Collagen fibers

- family of fibrous proteins encoded by >35 genes (2013)
- polymer subunit = tropocollagen; triple helix
- different structural and mechanical properties (strength, elasticity, pliability...)
- most abundant protein in human body (30% dry weight)

Collagen

Collagen

Туре	Localization	Structure	Main function
I	Bone, tendons, meniscus, dentin, dermis, capsules of organs, loose CT 90% of type I	Fibrils (75nm) – fibers (1-20µm)	Resilience in pull
II	Hyaline and elastic cartilage	Fibrils (20nm)	Resilience in pressure
111	Skin, veins, smooth muscles, uterus, liver, spleen, kidney, lung	Like I, high content of proteoglycans and glycoprotiens, reticular network	Shape formation
IV	Basal lamina of epithelium and endtohelium, basal membranes	No fibrils or fibers	Mechanical support
V	Lamina of muscle cells and adipocytes, fetal membranes	Like IV	
VI	Interstitial tissue, chondrocytes – adhesion		Connecting dermis and epidermis
VII	Basal membrane of epithelium		
VIII	Some endothelia (Cornea)		
X	Growth plate, mineralized cartilage		Growth of bones, mineralization

Julian Voss-Andreae "Unraveling Collagen",

2005

Orange Memorial Park Sculpture Garden, City of South San Francisco, CA

Elastic fibers

- less abundant than collagen
- polymer tropoelastin
- minimal tensile resistance, loss of elasticity if overstretched
- reduction of hysteresis = allow return back to original state after mechanic change

Reticular fibers

- collagen 3D meshwork
- bone marrow, spleen, lymphatic nodules
- microenvironment for e.g. hematopoietic stem cells and progenitors

Extracellular matrix – ground matrix

Amorphous extracellular matrix

Colorless, transparent, homogenous substance consisting of glycosaminglycans,

proteoglycans and structural glycoproteins

Glycosaminoglycans

linear polysaccharides composed of two disaccharide subunits – uronic acid and hexosamine

polysaccharides rich in hexosamines = acid mukopolysaccharides

glucuronic or iduronic acid

glucosamin or galactosamin

Glycosaminoglycans

They bind to protein structures (except for hyaluronic acid)

Glycosaminoglycan

Hyaluronic acid

Chondroitinsulphate Dermatansulphate Heparansulphate Keratansulphate Umbilical cord, synovial fluid, fluid of corpus vitreum, cartilage

Cartilage, bone, cornea, skin, notochord, aorta

Skin, ligaments, adventitia of aorta

Localization

Aorta, lungs, liver, basal membranes

Iris, cartilage, nucleus pulposus, anulus fibrosus

Proteoglycans

- protein + dominant <u>linear</u> saccharide component
- proteoglycan aggregates
- water-binding, volume dependent of hydratation
- aggrecan (cartilage)
- syndecan
- fibroglycan

Figure 9.25b Proteoglycan structure in bovine cartilage

From Mathews and van Holde: Biochemistry 2/e. © The Benjamin/Cummings Publishing Co., Inc.

Structural glycoproteins

- dominant protein + branched saccharide component
- interaction between cells and ECM

fibronectin – connects collagen fibers and glykosaminoglycans, cell adhesion and migration

- laminin basal lamina epithelial integrity
- chondronectin cartilage adhesion of chondrocytes to collagen

Composition of amorphous ground matrix

Classification of specialized connective tissue

Adipose tissue

- Adipocytes, fibroblasts, reticular, collagen and elastic fibers, capillarie
- White and brown adipose tissue

Brown adipose tissue

- fetus and child to 1st year of life
- fast source of energy
- typical localization between shoulder blades, axilla, mediastinum, around kidneys, pancreas, small intestine
- small cells with numerous fat droplets

- White adipose tissue
- adipocytes are actively form until 2nd year of life
- no innervations, but rich vascularisation
- adipocytes with only one lipid droplet
- leptin (adipokinins)

Further study

Guide to General Histology and Microscopic Anatomy

Petr Vaňhara, Miroslava Sedláčková, Irena Lauschová, Svatopluk Čech, Aleš Hampl

Masaryk University, Bmo 2017

http://www.med.muni.cz/histology

Thank you for attention

Dr. Petr Vaňhara, PhD. *pvanhara* @med.muni.cz