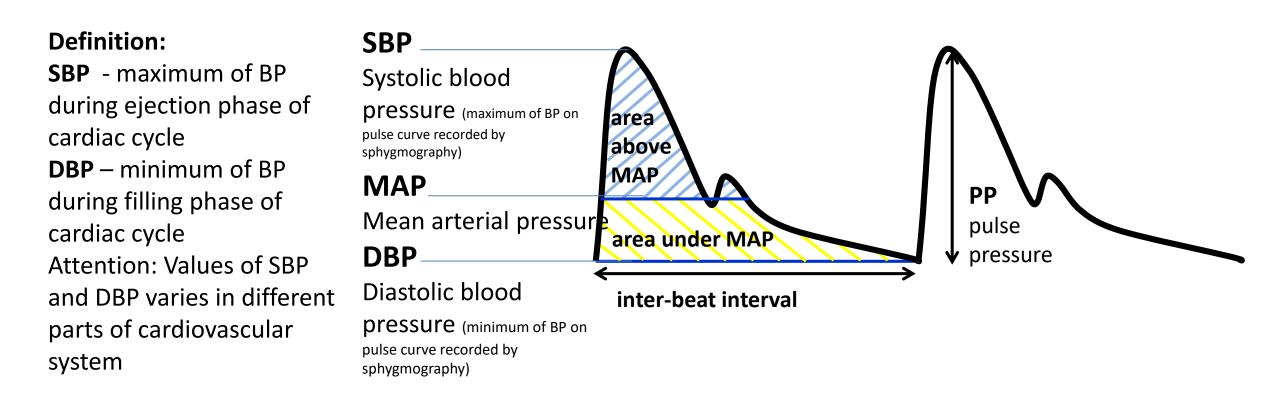
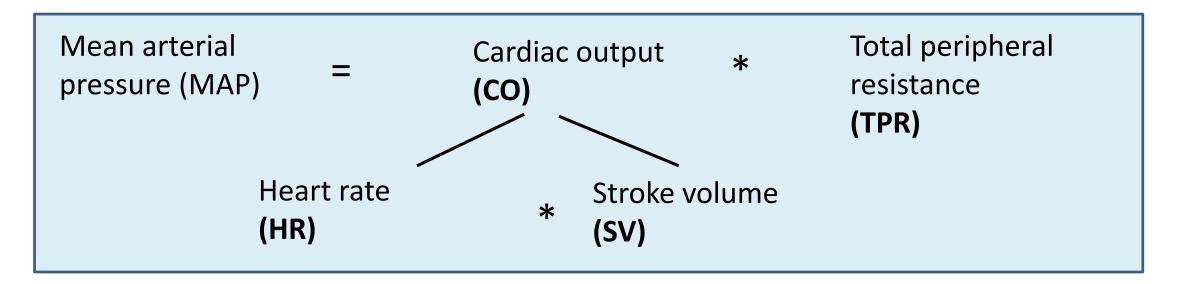
(VIII.) Blood pressure in man (IX.) Non-invasive methods of blood pressure measurement

Physiology II - practice


Arterial blood pressure curve

Blood pressure (BP): pressure on vascular wall (continual variable)


Mean arterial pressure (MAP) : mean value of blood pressure in the inter-beat interval (IBI)

- area under MAP = area above MAP
- aproximation: MAP≈ DBP + 1/3 PP

(PP = SBP - DBP)

MAP is a function of cardiac output and total peripheral resistance

- SBP is given mainly by CO
- DBP is given mainly by TPR

Blood pressure regulation

• **Short-term** – neural control, mainly baroreflex

• Medium-term – hormonal regulation, renin-angiotensinaldosteron system (RAAS)

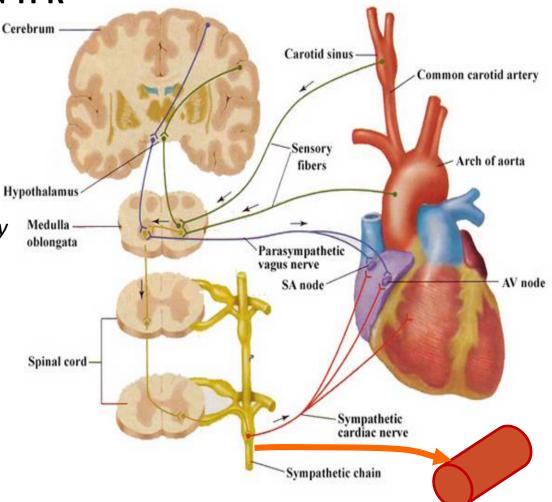
• Long-term – hormonal regulation of blood volume

Short-term BP control: Baroreflex

Autonomic nervous system:

sympathetic nerves (↑ BP, HR, SV a TPR) versus *parasympathetic nerves* (↓ BP, HR, SV a TPR)

Baroreflex: regulation of BP via changes of HR and TPR


baroreceptors – sinus caroticus + sinus aorticus *afferentation*: n. vagus, n. glossopharyngeus

Cardiac branch of baroreflex:

efferentation: n. vagus - SA node sympathetic efferentation: change of HR and cardiac contractility M \uparrow BP \rightarrow \downarrow HR and vice versa

• Peripheral branch of baroreflex:

efferentation: sympathetic vascular innervation $\uparrow BP \rightarrow \downarrow TPR$ and vice versa (vasoconstriction, venoconstriction)

Blood pressure changes

Short-term influences

- blood volume influence to SV (bleeding, dehydration)
- external pressure to the vessels intrathoracal a intraabdominal pressure (cough, defecation, childbirth, artificial ventilation)
- position orthostasis: higher DBP ([↑]TPR) a lower STK (↓venous return→ ↓heart filling → Starling principle→ ↓cardiac contraction → ↓SV)
- CNS emotions, mental stress,...
- physical load BP changes depend on intensity, duration and type of exercise
- heat (\downarrow TPR), cold (\uparrow TPR)
- alcohol, medicaments,...

Long-term influences

- age (the fastest changes during childhood and adolescence)
- sex (usually in men: higher BP)

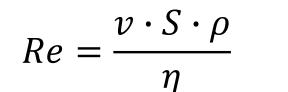
Methods of the arterial blood pressure measurement

Palpatory (sphygmomanometer)

In practicals:

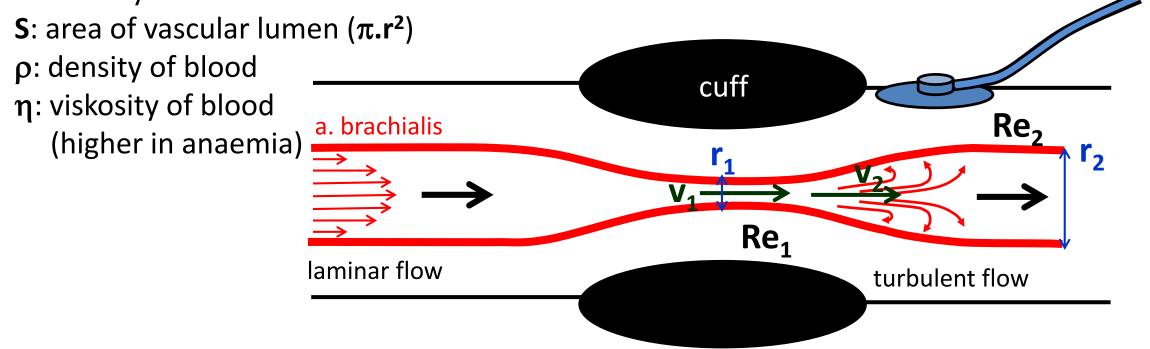
Oscillometric

Auscultatory (sphygmomanometer, stethoscope)

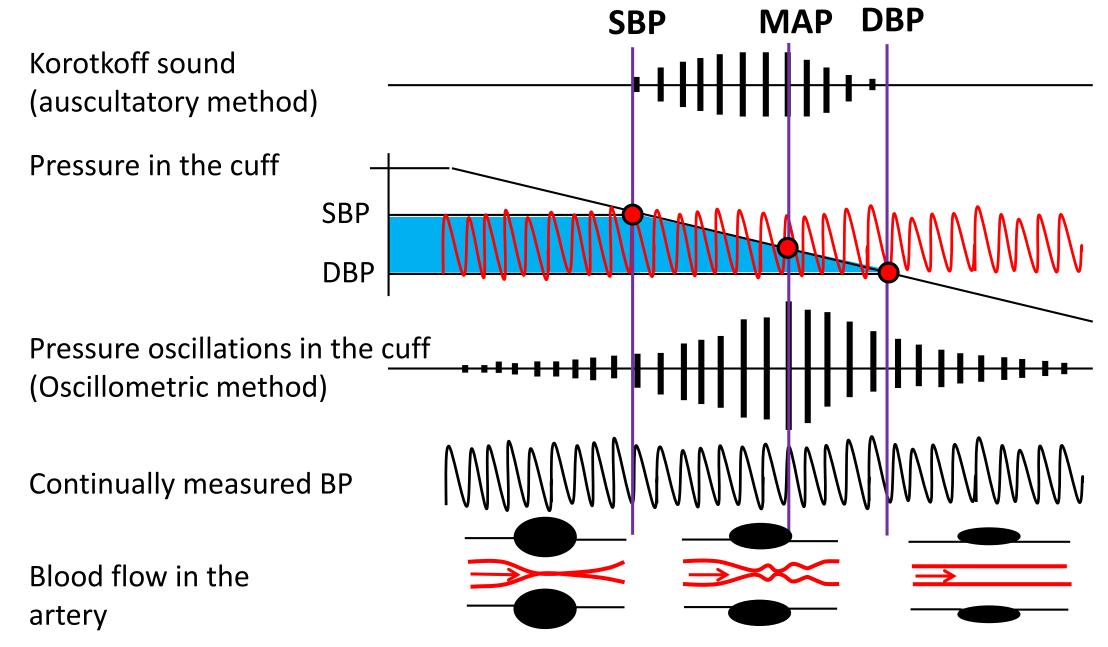

Another approaches:

24-hour blood pressure monitoring

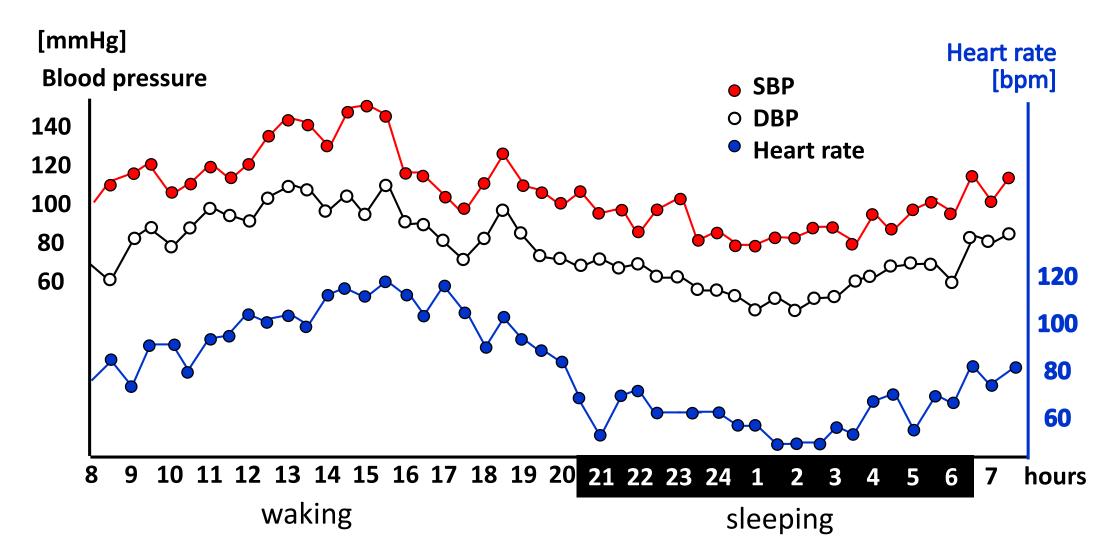
Photoplethysmografic (volume-clamp method, Peňáz)



Laminar / turbulent flow, Korotkoff sounds


laminar flow Re < 2000 turbulent flow Re > 3000

Reynolds number Re: predicts the transition from laminar to turbulent of flow **v**: velocity of blood flow


closely behind narrowing of the artery: $S_1 < S_2$ a $v_1 \approx v_2 \rightarrow Re_1 < Re_2 \rightarrow$ turbulent flow

Principles of blood pressure measurement

24-hour blood pressure monitoring

BP decrease during night: 10 - 15%

During BP measurement following rules must be observed

- Patient is sitting for a few minutes before the measurement.
- Only validated apparatus must be used.
- Perform at least two measurements in the course of 1–2 minutes.
- Use cuff of standard size (12–13 cm width and 35 cm length); however smaller and bigger cuffs must be available for patients with smaller or bigger size of arm, respectively.
- Cuff must be always at the level of heart of examined person.
- Pressure in the cuff must be decreased slowly: 2mmHg/s.

methods	advantages	disadvantages	measured value
auscultatory	 exact estimation of SBP/DBP easy, it doesn't require electricity 	 subjective, experience is necessary SBP/DBP from different IBI 	SBP and DBP
oscillometric	 exact estimation of MAP automatic, fast BP can be measured by layman, cheap (home measurement) 	 DBP/SBP is calculated (dependence on model, influence on shape of pulse wave) SBP/DBP from different IBI false values during arrhytmias 	MAP, sometimes SBP (it depends on device)
24 – hour BP monitoring	 BP record from whole day diagnosis of white-coat hypertension 	 disruptive influence of measuring (during sleeping) SBP/DBP from different IBI 	BP is measured each 15 – 60 min
photople- thysmographic (Peňáz)	 continual BP record possibility of beat-to beat SBP/DBP calculation (BP variability analysis) 	 measuring on the finger, brachial BP recalculating expensive device 	continual BP record

Diagnosis of hypertension

	blood pressure	SBP [mmHg]	DBP [mmHg]	possible complications
normal	optimal	<120	<80	
	normal	120 – 129	80 - 84	
	high normal	130 - 139	85 – 90	
hyper- tension	1st stage	140 – 159	90 – 99	without organ changes
	2nd stage	160 - 179	100 - 109	hypertrophy of L ventricle, proteinuria, angiopathy,
	2nd stage 3rd stage	> 180	> 110	morphological and functional changes of some organs, retinopathy, heart and renal insufficiency, ischemia of CNS, bleeding in CNS

- isolated systolic hypertension: SBP> 140 and DBP <90
- high normal BP annual monitoring recomended
- home measurement to exclude white coat hypertension
- hypertension is diagnosed when:
- average BP from 4 5 examinations is > 140/90
- BP during a home measurement repeatedly > 135/80
- mean BP from 24-hour monitoring is > 130/80

Changes of blood pressure during exercise

- increase of BP depends on the type, intensity and duration of the load
- sympathetic activation: changes in the cardiovascular system serve to satisfy metabolic needs of working muscle
- impact of exercise on blood pressure
 - increased cardiac output $\rightarrow \uparrow$ SBP
 - Redistribution of blood in the body metabolic vasodilation in muscle (muscle increases blood flow), vasoconstriction in the GIT, skin and kidneys → maintaining or slight change in DBP (depending on the extent of the TPR decrease)
- vasoconstriction in the skin is temporary, since thermoregulatory mechanisms dominate
- DBP increases during isometric muscle work (eg. weightlifting)
- after exercise: decrease of BP on the initial or a slightly lower value, the blood flow in the muscle remains elevated until recovery
- Recovery interval is determined by the parasympathetic tone (can be increased training)