PHYSIOLOGY OF EXERCISE

EXERCISE:

Dynamic (positive/negative)
 Static

MUSCLE TYPES

- Skeletal
- Heart
- Smooth

Agonist and **antagonist** act one against the other (e.g. flexion of elbow - biceps brachialis - agonist, triceps brachialis - antagonist).

Types of contractions:

- isometric
 dynamic (isotonic)
- a. concentric
- b. excentric

"Fight or flight" – EVOLUTIONAL ASPECT

HOMEOSTASIS

THERMOREGULATION

ANTICIPATION OF WORK

CHANGES DURING EXERCISE:

- 1. Cardiovascular
- 2. Respiratory
- 3. Metabolic

CARDIOVASCULAR REACTIONS DURING WORK

- 1. Reactions of the heart
- 2. Reactions of the vessels

Ergotropic system – sympathetic NS

REDISTRIBUTION OF BLOOD

Demands on cardiovascular system:

- 1. Increase of cardiac output
- 2. Increase in coronary blood flow
- 3. Hyperaemia in lung circulation
- 4. Hyperaemia in muscles (difference between contraction and relaxation!!!)
- 5. Higher supply of O_2 and metabolites, higher removal of CO_2 and catabolites

METABOLIC REGULATION OF BLOOD FLOW

Decreased pH, decreased pO₂, increased pCO₂, increased K⁺, increased body temperature

CARDIAC RESERVE = maximal CO / resting CO **4 - 7**

CORONARY RESERVE = maximal CF / resting CF3.5CHRONOTROPIC RESERVE = maximal HR / resting HR3 - 5VOLUME RESERVE = maximal SV / resting SV1.5

CO - cardiac output, CF - coronary flow, HR - heart rate, SV - stroke volume

PARAMETER	REST	EXERCISE	INCREASE (x)
Cardiac output	5-6	25 (35)	4-5 (7)
(l/min)			Cardiac reserve
Heart rate	70	210 (250-190)	3-5
(t/min)		depends on age	Chronotropic reserve
Stroke volume	75	115	1.5
(ml)			Volume reserve
Systolic BP	120	?	-
(mmHg)			
Diastolic BP	70	I ↑ ?	-
(mmHg)			
Pulse BP	50	70-100	1.5-2
(mmHg)			
Mean BP	-	-	minor increase
(mmHg)			
Muscle perfusion	2-4	60-120	30
(ml/min/100g)			(10% MV _{max})

Demands on respiratory system:

- 1. Higher gases exchange higher diffusion
- 2. Higher ventilation
- 3. Higher perfusion (hyperaemia in lung circulation)

PARAMETER	REST	EXERCISE	INCREASE (x)
Minute ventilation (l/min)	6-12	90-120	15-20
Respiratory frequency (d/min)	12-16	40-60	4-5
Tidal volume (ml)	0,5-0,75	2	3-4
Blood flow (l/min)	5,5	20-35	4-6
O_2 intake (ml/min) - V_{O2}	250-300	3000	10-12
Total CO ₂ (ml/min)	200	8000	40
pO ₂ (Torr)	40	25	
O ₂ extraction (%)	+	+	++

$$R = 1.5 - 2.0$$
 $R = 0.5$

Guyton and Hall: Textbook of Medical Physiology

OVERVIEW OF MUSCLE METABOLISM

ATP for muscle contraction is continuously produced by aerobic metabolism of glucose and fatty acids. During short bursts of activity, when ATP demand exceeds the rate of aerobic ATP production, aerobic glycolysis produces ATP, lactate, and H⁺.

AEROBIC VERSUS ANAEROBIC METABOLISM

Anaerobic metabolism produces ATP 2.5 times faster than aerobic metabolism, but aerobic metabolism can support exercise for hours.

ENERGY SUBSTRATE USE DURING EXERCISE

At low-intensity exercise, muscles get more energy from fats than from glucose (CHO). During high-intensity exercise (levels greater than 70% of maximum), glucose becomes the main energy source.

Data from G. A. Brooks and J. Mercier, *J App Physiol* 76: 2253–2261, 1994

OXYGEN CONSUMPTION AND EXERCISE

Oxygen supply to exercising cells lags behind energy use, creating an oxygen deficit. Excess postexercise oxygen consumption compensates for the oxygen deficit.

BLOOD GASES AND EXERCISE

Arterial blood gases and pH remain steady with submaximal exercise.

EXERCISE IMPROVES GLUCOSE TOLERANCE AND INSULIN SECRETION

The experiments tested normal men (blue line), men with type 2 diabetes who had not been exercising (red line), and those same diabetic men after seven days of exercise (green line).

250

200

150

100

50

0

Ingest

glucose

30

Plasma glucose (mg/dL)

Data from B. R. Seals, et al., J App Physiol 56(6): 1521-1525, 1984; and M. A. Rogers, et al., Diabetes Care 11: 613-618, 1988.

60

90

Time (min)

120

150

180

D.U.Silverthorn: Human Physiology (An Integrated Approach)

30

Ingest

glucose

60

90

Time (min)

120

150

180

- Spiroergometry
- Types of ergometers
- Index W₁₇₀
- Training
- Fatigue (aerobic, anaerobic threshold)
- Adaptation to exercise