Kidneys in regulation of homeostasis

Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

Department of Physiology
Faculty of Medicine, Masaryk University

This presentation includes only the most important terms and facts. Its content by itself is not a sufficient source of information required to pass the Physiology exam.

A45. Kidney in regulation of homeostasis

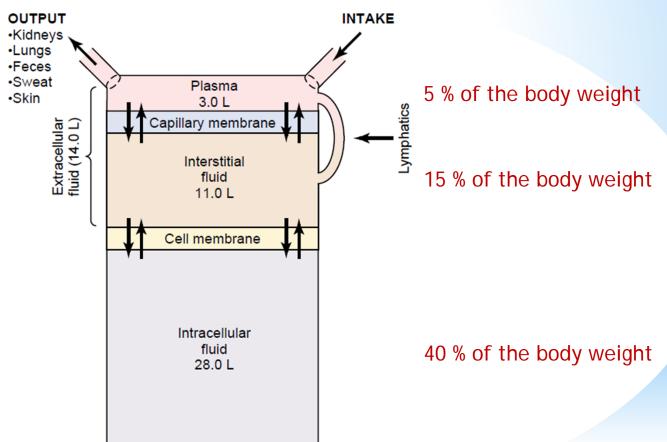
- A3. Compartmentalization of body fluids
- A4. Differences between intra- and extracellular fluids
- B84. Regulation of body fluid volume
- B85. Regulation of constant osmotic pressure
- B65. Formation and secretion of posterior pituitary hormones
- B70. Adrenal cortex. Functions, malfunctions.
- B74. Natriuretic peptides
- B73. Bone formation and resorption. Regulation of calcaemia.
- A33. Homeostasis (acid-base balance)

Homeostasis

= maintainance of stable conditions in the internal body environment

Maintainance of Constant Volume and Composition of Body Fluids

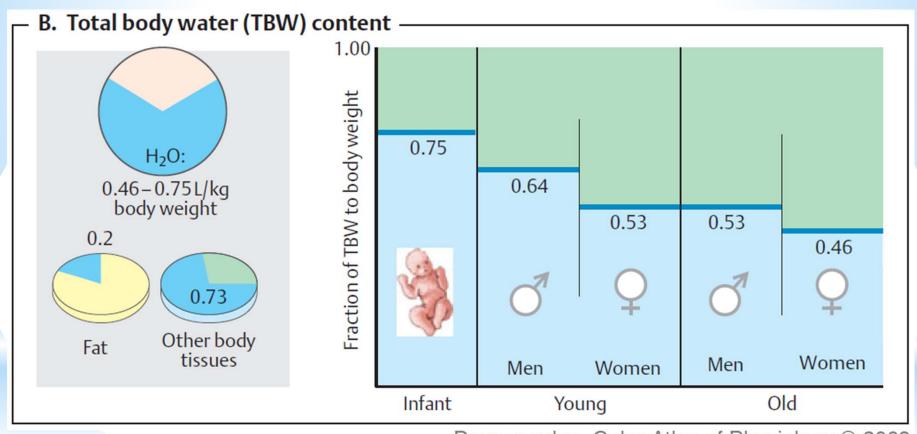
Maintainance of Acid-Base Balance


Constant Volume and Composition of Body Fluids - Regulation by Kidneys -

Body Fluids – Types and Volumes

Compartments

60 % of the body weight in total


Transcellular fluid (1-2 I) - special type of ECF

Guyton & Hall. Textbook of Medical Physiology

Body Fluids – Types and Volumes

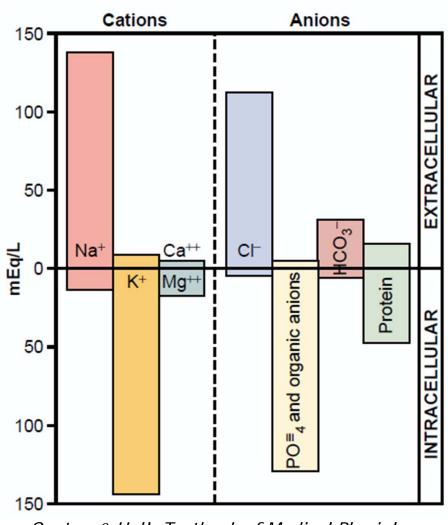
Changes with aging

Despopoulos, Color Atlas of Physiology © 2003

Body Fluids – Types and Volumes

Balance between Input and Output of Fluid

Daily Intake and Output of Water (ml/day)


	Normal	Prolonged, Heavy Exercise
Intake		
Fluids ingested	2100	?
From metabolism	200	200
Total intake	2300	?
Output		
Insensible—skin	350	350
Insensible—lungs	350	650
Sweat	100	5000
Feces	100	100
Urine	1400	500
Total output	2300	6600

Guyton & Hall. Textbook of Medical Physiology

Body Fluids – Composition

ECF vs. ICF

Body Fluids – Composition

plasma vs. ISF

	Plasma (m0sm/L H₂0)	Interstitial (m0sm/L H ₂ 0)
Na ⁺ K ⁺ Ca ⁺⁺ Mg ⁺	142	139
\mathbf{K}^{+}	4.2	4.0
Ca ⁺⁺	1.3	1.2
Mg^+	0.8	0.7
Cl	108	108
HCO ₃	24	28.3
$HPO_4^-, H_2PO_4^-$	2	2
SO_4^-	0.5	0.5
Phosphocreatine		
Carnosine		
Amino acids	2	2
Creatine	0.2	0.2
Lactate	1.2	1.2
Adenosine triphosphate		
Hexose monophosphate		
Glucose	5.6	5.6
Protein	1.2	0.2
Urea	4	4
Others	4.8	3.9

Guyton & Hall. Textbook of Medical Physiology

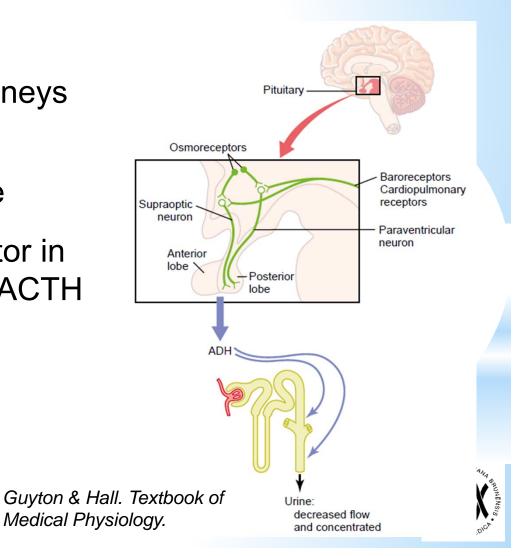
Body Fluids – Composition

osmolality 285 mosm/kg H₂O

- ↑ NaCl intake, loss of water → shrinking of cells
- ↓ NaCl intake, ↑ water input → cell edema

Precise regulation of osmolality of ESF is necessary!

- osmoreceptors
- kidneys (target organ for the action of hormones below)
- antidiuretic hormone
- aldosteron
- natriuretic peptides

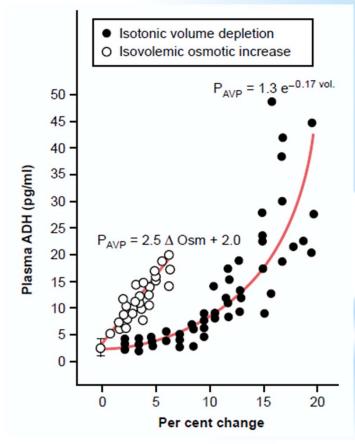


Antidiuretic Hormone

(vasopressin)

- effects:

- → water reabsorption in kidneys (aquaporin 2)
- → control of blood pressure
- →↑ glycogenolysis, mediator in the brain, ↑ secretion of ACTH in adenohypophysis



Antidiuretic Hormone

(vasopressin)

- regulation of secretion:

- ↑ ↑ osmolality
 - ↓ volume of ECF
 - pain, emotions, stress (surgical),
 physical exertion; standing
 - nausea, vomitting
 - angiotensine II
 - morphin, nicotine, barbiturates, ...
- ↓ ↓ osmolality, ↑ volume of ECF
 - alcohol; antagonists of opioids

Guyton & Hall. Textbook of Medical Physiology.

Antidiuretic Hormone

(vasopressin)

- pathology:
 - ↑ SIADH
 - ↓ diabetes insipidus

Aldosteron

- the most important steroid with the mineralocorticoid effect
- mechanism of action:

binding to the mineralocorticoid receptor

- → synthesis of proteins:
- namely Na⁺/K⁺-ATPase
- ↑ number of amiloride-inhibited Na+-channels
- ↑ activity of H⁺-pump
- ↑ activity of Na⁺/H⁺-antiport

Aldosteron

- the most important steroid with the mineralocorticoid effect

- effects:

- → ↑ Na+ reabsorption (urine, sweat, saliva, gastric juice)
- $\rightarrow \uparrow$ K⁺ urine excretion, \uparrow acidity of urine (exchange for Na⁺)
- → ↑ K+ content and ↓ Na+ content in muscle and brain cells

Aldosteron

- the most important steroid with the mineralocorticoid effect
- regulation of its secretion:
 - ACTH (transient effect)
 - direct stimulatory effect of ↑ plasmatic concentration of K⁺ and ↓ Na⁺ (lower sensitivity)
 - renin-angiotensine-aldosteron system
 - atrial natriuretic peptide
 - other hormones od adenohypophysis (maintenance of reactivity of zona glomerulosa)

Aldosteron - Pathology

Primary hyperaldosteronism (Conn's syndrome)

tumors of adrenal cortex which secretes aldosteron

Secondary hyperaldosteronism

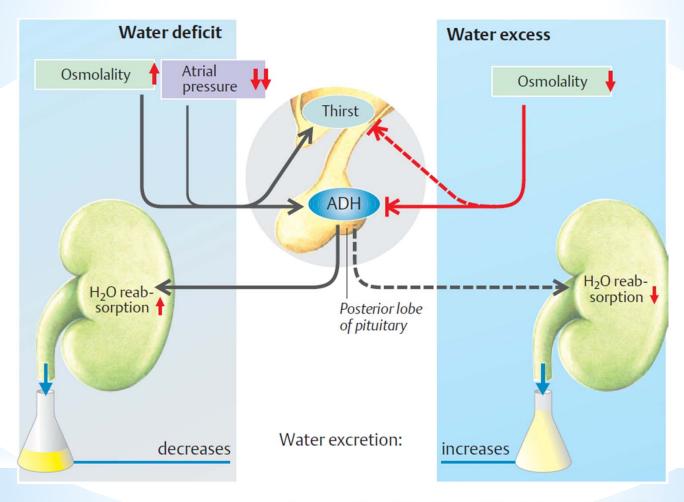
- patients with the congestive heart failure, nephrosis, liver cirhosis, renal artery constriction, hypertension, with the salt-losing form of adrenogenital syndrome

Hyporeninemic hypoaldosteronism

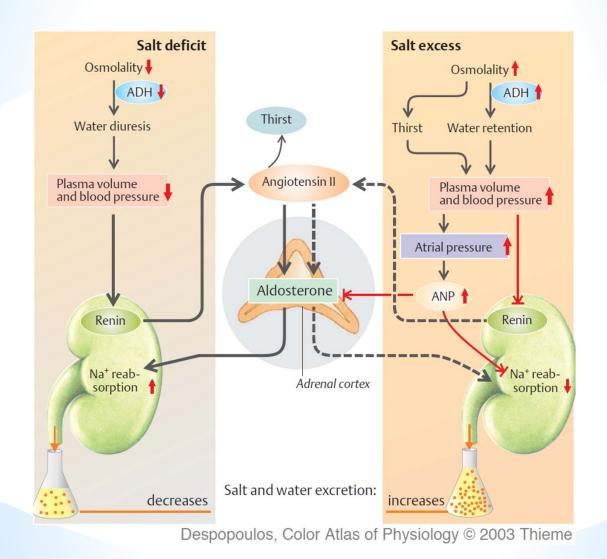
Pseudohypoaldosteronism

Atrial Natriuretic Peptide

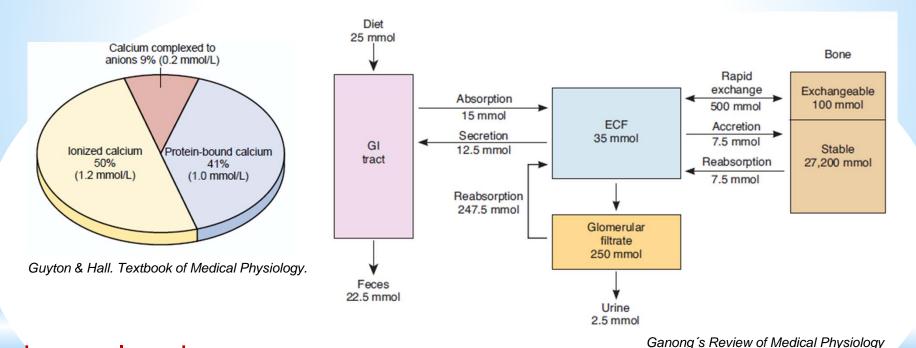
- one of natriuretic peptides (BNP cardiac ventricles, CNP brain)
- secreted by atrial cardiomyocytes, found also in the brain
- receptors
- short half-life


Atrial Natriuretic Peptide

- one of natriuretic peptides (BNP cardiac ventricles, CNP brain)
- effects (through \uparrow cGMP): $\rightarrow \downarrow$ BP (also through the brain stem)
 - → natriuresis
 - → ↓ reactivity of vascular smooth muscles for vasocontrictive substances
 - → inhibition of renin secretion, ↓ reactivity of *zona glomerulosa* for stimuli ↑ aldosteron secretion
 - \rightarrow inhibition of ADH secretion $\rightarrow \uparrow$ water excretion
- regulation of its secretion:
 - ↑ ↑ ECF volume
 - ↓ ↓ CVP at orthostasis


Water Homeostasis

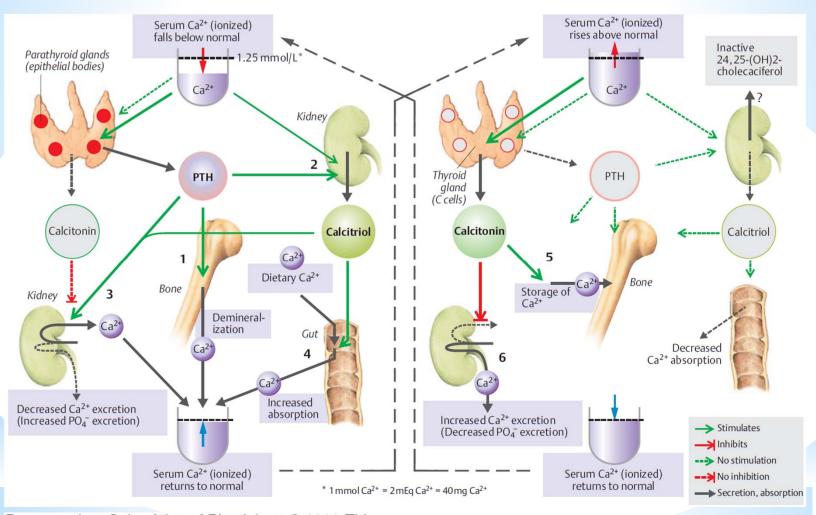
water intoxication



Salt Homeostasis

Calcium in the Body

hypocalcemia hypercalcemia



Hormonal Regulation of Calcemia

Parathormone
Vitamin D
Calcitonin

Hormonal Regulation of Calcemia

Despopoulos, Color Atlas of Physiology © 2003 Thieme

Acid-Base Balance - Regulation by Kidneys -

Acid-base balance is regulated by:

1) Buffers

- fast regulation (seconds)
- pH changes attenuated by binding and release of H+:

```
buffer + H<sup>+</sup> ₹ H - buffer
```

†[H+] direction to the right favoured till free buffer is available

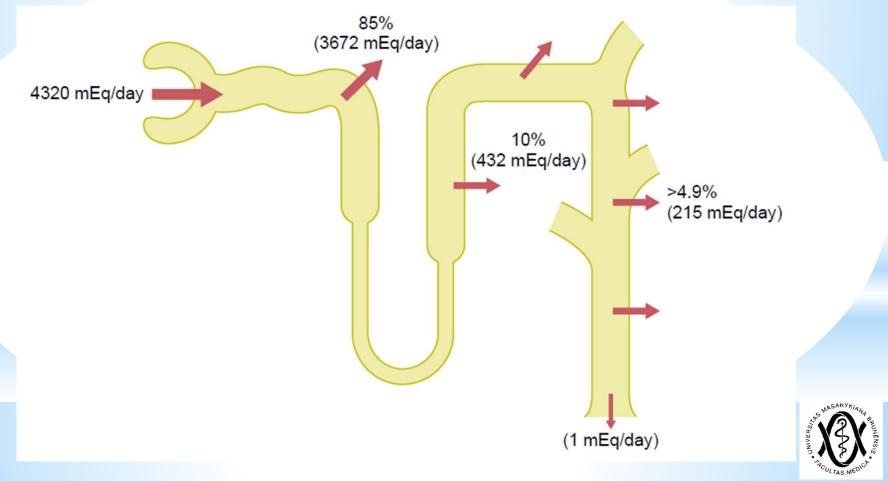
↓[H+] direction to the left favoured, H+ released

2) Lungs

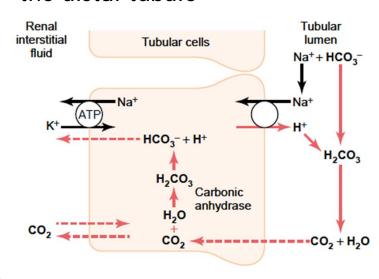
- fast regulation (minutes even hours)
- elimination of CO₂ from the body (H₂CO₃ → H₂O + CO₂)

3) Kidneys

- slower regulation (hours even days) but the most powerful
- elimination of acids and bases from the body


Regulation of Acid-Base Balance by Kidneys

- by excretion of acid or alkalic urine
- a high amount of HCO₃⁻ still filtered in the glomerulus GFR 180 I/day, [HCO₃⁻]_{plasma} 24 mEq/I → 4320 mEq HCO₃⁻ filtered per day - almost all ordinarily reabsorbed
- a high amount of H⁺ still secreted in renal tubules about 80 mEq of non-volatile acids are formed in the course of metabolic processes per day - have to be excreted by kidneys
- filtered HCO₃- / secreted H⁺

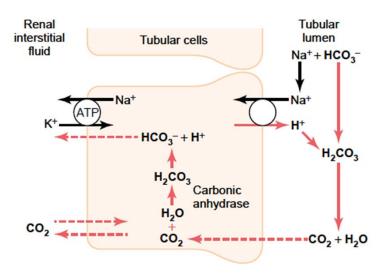

Regulation of Acid-Base Balance by Kidneys

- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃-

Regulation of Acid-Base Balance by Kidneys

- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃
 - in the proximal tubule, thick loop of Henle and at the beginning of the distal tubule

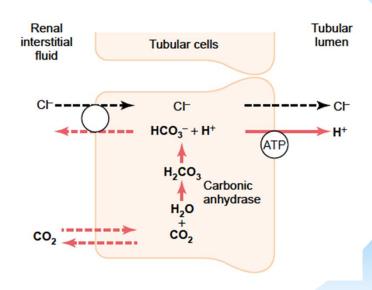
Na+/H+-antiport


>90% HCO₃⁻ reabsorbed - only a slight acidification of the urine!

Reabsorption of HCO₃- across the basolateral membrane facilitated by:

- Na⁺-HCO₃⁻ co-transport (the proximal tubule)
- Cl⁻-HCO₃⁻ exchanger
 (the end of proximal tubule and the following parts of tubulus except for the thin loop of Henle)

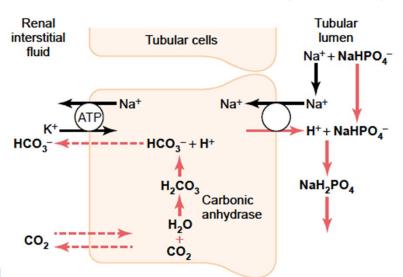
Regulation of Acid-Base Balance by Kidneys


- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃
 - in the proximal tubule, thick loop of Henle and at the beginning of the distal tubule

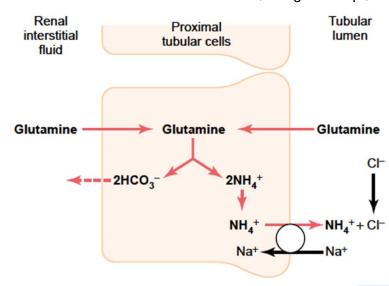
Na+/H+-antiport

>90% HCO₃⁻ reabsorbed - only a slight acidification of the urine!

in the final part of distal tubule and in the collecting duct

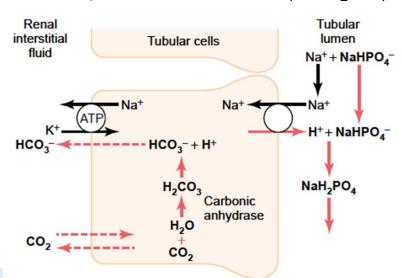


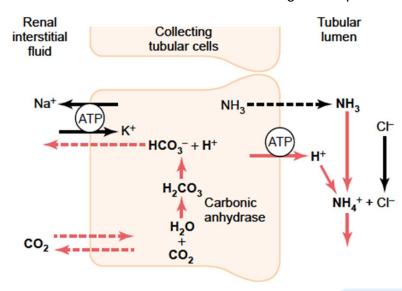
primary active transport of H⁺ (intercalated cells)


acidification of urine

Regulation of Acid-Base Balance by Kidneys

- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃-
- 3) Production of HCO₃- de novo
 - ❖ Phosphate buffer (HPO₄²⁻, H₂PO₄⁻)

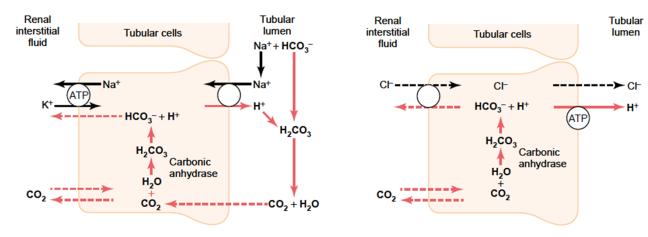

 HPO_4^{2-} and $H_2PO_4^{-}$ are reabsorbed less than water \Rightarrow their concentration in the tubular fluid gradually rises Ammonium buffer (NH₃, NH₄+)


NH₄⁺ originates from glutamine - the proximal tubule, thick ascending loop of Henle and distal tubule

Regulation of Acid-Base Balance by Kidneys

- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃-
- 3) Produkce nového HCO₃-
 - ❖ Phosphate buffer (HPO₄²⁻, H₂PO₄⁻)

 HPO_4^{2-} and $H_2PO_4^{-}$ are reabsorbed less than water \Rightarrow their concentration in the tubular fluid gradually rises Ammonium buffer (NH₃, NH₄+)

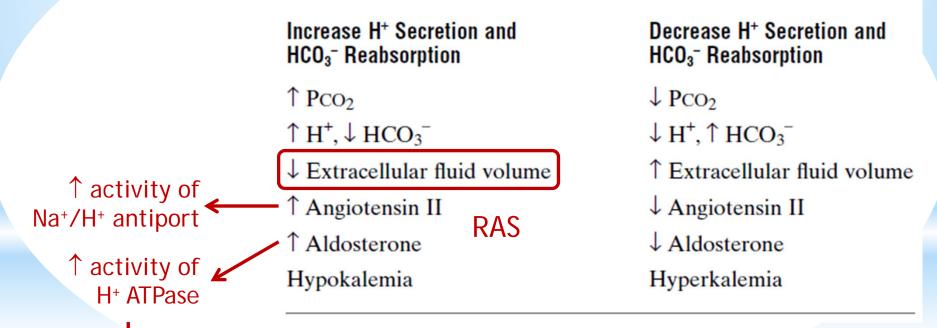


the collecting duct (permeable for NH₃ but far less for NH₄⁺ - excreted by urine) 50% of H⁺ secretion and HCO₃⁻ formed *de novo*!

Regulation of Acid-Base Balance by Kidneys

Regulation of H⁺ secretion

† - † pCO₂ in ECF (respiratory acidosis; direct stimulation due to † formation of H⁺ in tubular cells)



- → pH in ECF (respiratory or metabolic acidosis)
- 1 secretion of aldosteron (stimulates H+ secretion in intercalated cells of collecting ducts; Conn´s syndrome alkalosis)

Regulation of Acid-Base Balance by Kidneys

Regulation of H⁺ secretion

Factors That Increase or Decrease H⁺ Secretion and HCO₃⁻ Reabsorption by the Renal Tubules

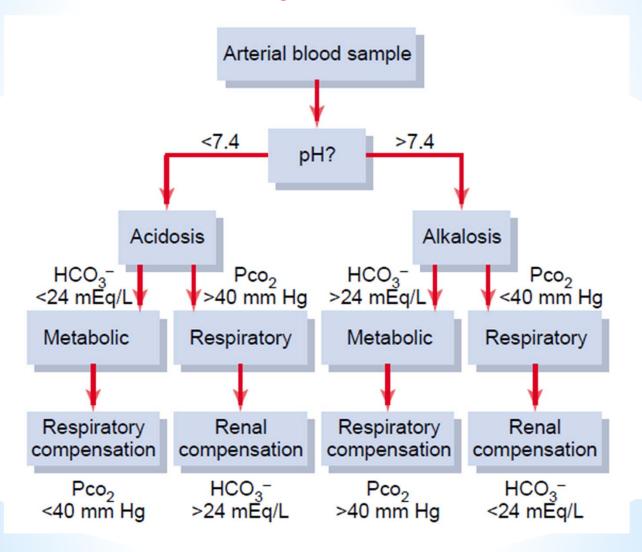
tendency to alkalosis

Regulation of Acid-Base Balance by Kidneys

Acidosis - correction by kidneys

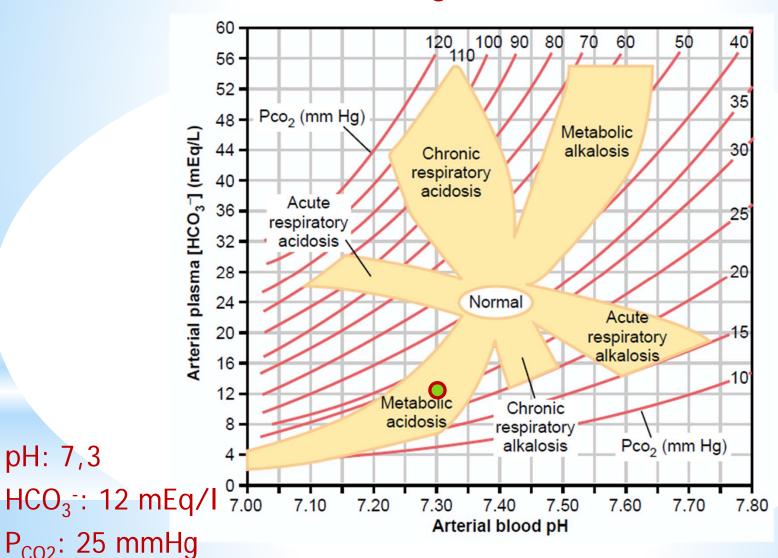
$$\downarrow$$
 pH = 6.1 + log $\frac{HCO_3^-}{0.03 \times P_{CO2}}$ \downarrow

- metabolic acidosis: due to ↓ HCO₃⁻ renal correction : ↓ HCO₃⁻ in ECF → ↓ filtered HCO₃⁻ → complete reabsorption of HCO₃⁻ + its formation *de novo* (HCO₃⁻ not excreted) + ↑ H⁺ excretion → pH normalization
- respiratory acidosis: due to $\uparrow P_{CO2}$ (hypoventilation) renal correction: $\uparrow P_{CO2}$ in ECF $\rightarrow \uparrow P_{CO2}$ in tubular cells $\rightarrow \uparrow$ formation of H⁺ and HCO₃⁻ in tubular cells $\rightarrow \uparrow$ H⁺ secretion + \uparrow HCO₃⁻ reabsorption \rightarrow pH normalization

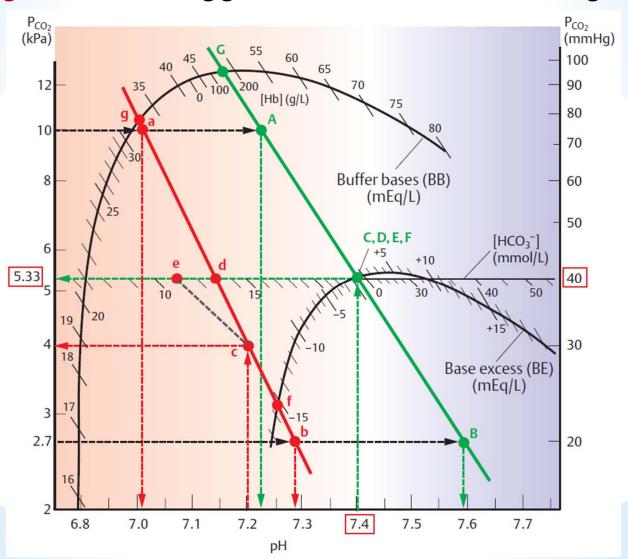

Regulation of Acid-Base Balance by Kidneys

Alkalosis - correction by kidneys

↑ pH = 6.1 + log
$$\frac{\text{HCO}_3^-}{0.03 \times P_{CO2}}$$
 ↑


- metabolic alkalosis: due to ↑ HCO₃⁻ renal correction: ↑ HCO₃⁻ in ECF → ↑ filtered HCO₃⁻ → incomplete HCO₃⁻ reabsorption (lack of H+) → ↑ HCO₃⁻ excretion by urine → pH normalization
- respiratory alkalosis : due to \downarrow P_{CO2} (hyperventilation) renal correction: \downarrow P_{CO2} in ECF \rightarrow \downarrow P_{CO2} in tubular cells \rightarrow \downarrow formation of H⁺ and HCO₃⁻ in tubular cells \rightarrow \downarrow H⁺ secretion + \downarrow HCO₃⁻ reabsorption \rightarrow pH normalization

Diagnostics


Diagnostics

pH: 7,3

Diagnostics - Siggaard-Andersen nomogram

