
Epidemiological determinants of infectious diseases

MUDr. Marie Kolářová, CSc. Ústav ochrany a podpory zdraví LF MU Spring 2018

Chicken Pox

Many parts of the body are colonized by normal flora, which can be the source of endogenous infection. Large numbers of micro-organisms are found in moist areas of the skin (e.g. the groin, between the toes), the upper respiratory tract, the digestive tract (e.g. the mouth, the nasopharynx), the ileum and large intestine, the anterior parts of the urethra and the vagina.

Other routes are interhuman transmission of infections and exposure to exogenous contamination.

Healthy newborn = germ-free organism Gradual colonization: * Skin - when passing through the mother's birth paths

- * breathing paths at first breath
- * GIT at first swallowing

... ended until the 8th day

Permanent colonization, eumicrobia,

Types of bacteria event. fungi (never virus!) are for a given system:

- * characteristic,
- * non-pathogenic,
- * constant composition

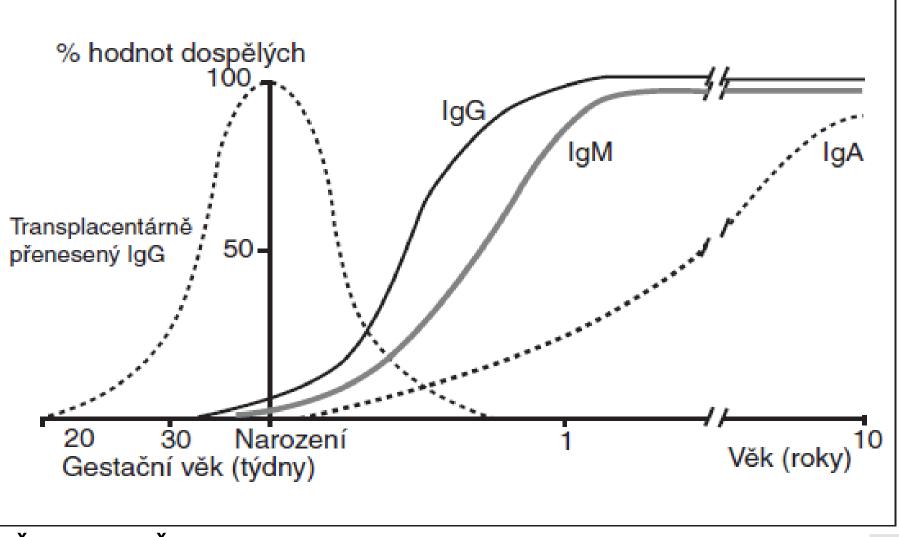
Constantly restored balance between the host and the micro-organism.

Balance distorts:
a) external changes (chemical, physical)
b) host properties (hormonal, immune status, drugs - ATB, corticosteroids, cytostatics)

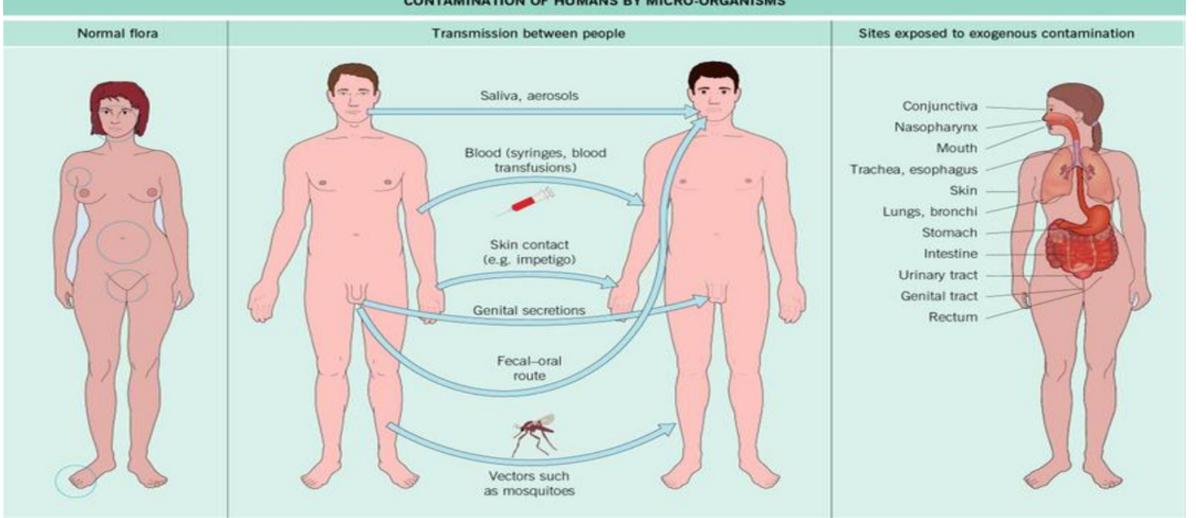
The importance of physiological microflora
+ affects digestion, absorption, peristalsis
+ produces vitamins

+ protection of skin and mucous membranes from microbes with higher pathogenicity

Negative influence:


- the risk of endogenous infections in immunosuppressed persons

 complications of interpretation of serological examinations) Pathogenesis of infectious diseases


Parasitism - survival and multiplication of host microbes with host abuse **Comensalism** - the microbe uses the host but does not damage it **Symbiosis** - hosts and microorganisms benefit from coexistence **Carriage** - the state of immunobiological balance

Development of immunoglobulin levels

Maturation of the immune systém; defense.

Šedivá A. Čes.-slov. Pediat., 2005, roč.60, č.11, s. 617-624

CONTAMINATION OF HUMANS BY MICRO-ORGANISMS

Etiological structure of infections

Bacteria

- Gram positive
- > Gram negative
- >Acid-resistant rod .--. Mycobacteria

Viruses

- Enveloped HIV, HBV, measles, mumps, influenza, rabies
- Unenveloped adenoviruses, HPV, Polio

Prions

Parasites (Eukaryotic Pathogen)

Fungi - Candida, Aspergillus

Protozoa - Plasmodium, Schistosoma

Worms - Ascaris, Taenia

Etiological structure of infections The agent of infection – important characteristic:

infectivity – capacity to multiply in host pathogenicity – capacity to cause disease in host virulence - pathogenicity in a specific host immunogenicity – capacity to induce specific and lasting immunity in host antigenic stability – can induce long-life immunity resistance - in environment Resistance of microorganism s in inanimate environment The viability of micro-organisms and their survival in the external environment depends on:

on their properties and

on the environment in which they are located.

(by combining - low temperatures,

- lower humidity,

- absence of toxic substances, and

- the presence of colloidal substances that have a protective effect).

Resistance of microorganism s in inanimate environment Organisms vary in their capacity to survive and to withstand adverse environmental conditions, for example:

* heat, cold, dryness.

<u>Sporo-forming organisms</u>, such as tetanus bacilli which can survive for years in a dormant state, have a major advantage over an organisms like the gonococcus which survive for only a very short time outside the human host. Pathogenesis of infectious diseases 1. entry of the etiological agent to a susceptible individual;

- adherence of the agent to the target tissue;
 reproduction and invasion;
- 4. host damage by toxins or other mechanisms;
- 5. exclusion of the agent through some of the biological materials
- 6. possible survival of agents for a long time in an inanimate external environment

Pathogenesis of infectious diseases Infection is the entry and development or multiplication of an infectious agent in the body of man or animals. An infection does not always cause illness.

- There are several levels of infection (Gradients of infection):
 - Colonization (S. aureus in skin and normal nasopharynx)
 - Subclinical or inapparent infection (polio)
 - Latent infection (virus of herpes simplex)
 - Manifest or clinical infection

Virulence factors

For all pathogens are important Infective and lethal doses.

Virulence factors affecting their pathogenicity:

- 1. Pilli that ease attachment
- 2. Covers that interfere with phagocytosis
- 3. Exotoxins
- 4. Endotoxins
- 5. Proteases that degrade antibodies
- 6. Ability to change the antigens that escape the fragments

Chain of infections (epidemic proces)

1. the **presence of rezervoir (source)** of infection man, animal at the ende of incubation period

acute stage cariers

2. the way of transmission A/direct contact

- touching, kissing or sexual intercourse (Staphylococcus spp., Gonococcus spp.,HIV ...), vertical transmission from mother to fetus (VHB, VHC, HIV, listeria, rubella,
- cytomegalovirus...)
 - B/ indirect contact
- inhalation of droplets containing the infectious agents (TBC, measles, influenza...)
 ingestion of food or water that is contaminated (salmonella, giardia, Norwalk virus, VHA....)
- by insects (malaria, borellia....

3. the susceptibility of the population or its individual members to the

organism concerned

<u>Host factors :</u> a g e , n u t r i t i o n, g e n e t i c s i m m u n i t y – natural (nonspecific), - acquired

THE INFECTION

= 1. prezence of rezervoir (source) of infection

..........

The chain of infections

<u>1. the presence</u> of source of infection is the site or sites in which a disease agent normally lives and reproduces.

May be classified as: - human - at the ende incubation period, if is ill, reconvalescent, carriers – healthy, chronic diseases - animals - at the ende incubation period, if is ill, carriers – healthy, reconvalescent, chronic

The chain of infections

2. the metod of transmission

A/ direct contact

touching, kissing or sexual intercourse (Staphylococcus spp., Gonococcus spp.,HIV ...),

- vertical transmission – from mother to fetus (VHB, VHC, HIV, listeria, rubella, cytomegalovirus...)

B/ indirect contact

- inhalation of droplets containing the infectious agents (TBC, measles, influenza...)
- ingestion of food or water that is contaminated (salmonella, giardia, Norwalk virus, VHA....)
 - biological transmission by insects (malaria, borellia....)

Host factors : The chain of Non specific immunity infections Barrier action (natural barrier) External barrier: skin, mucosa 3. the susceptibility Secretion of skin and mucosa of the population or Accessory organ its individual Internal barrier: placenta, blood-brain barrier Phagocytosis member to the Humoral action : organism Complement, Lysozyme, Fibronection, Cytokines. concerned, and the Specific immunity characteristic of the Humoral immunity Immunoglobulin: IgG, IgM, IgE, IgA, IgD organism itself. Cell mediated immunity

Host factors : The chain of Non specific immunity infections Barrier action (natural barrier) External barrier: skin, mucosa 3. the susceptibility Secretion of skin and mucosa of the population or Accessory organ its individual Internal barrier: placenta, blood-brain barrier Phagocytosis member to the Humoral action : organism Complement, Lysozyme, Fibronection, Cytokines. concerned, and the Specific immunity characteristic of the Humoral immunity Immunoglobulin: IgG, IgM, IgE, IgA, IgD organism itself. Cell mediated immunity

Prevention of infectious diseases

Isolation of patients:

- Dpt. of infectious diseases,
- "high degree of isolation" (ebola)
- at home,
- barriers nursing technique

HANDWASHING, DISINFECTION OF HANDS

LINEN WASHING,

CLEANING GOOD PREPARING OF FOOD, SAFE WATER.....,

DISINFECTION STERILIZATION

.

Prevention of infectious diseases

Prevention of infectious diseases

n m u n i t y – natural (nonspecific),

acquired (vaccination)

Principles of Vaccination

Active immunisation

A live or inactivated substance (e.g., a protein, polysaccharide) capable of producing an immune response is administered to the organism to target specific antibodies against that antigen.

Protein molecules (immunoglobulin) produced by B lymphocytes to help eliminate an antigen

Passive immunisation

Transfer of antibodies produced by one human or other animal to another.

Temporary protection

Transplacental most important source in infancy

Preventive, repressive measures If the epidemiology is know, we can interfere with transmission:

"BREAKING THE CHAIN OF INFECTION"

Different infections have different epidemiologies and thus require different methods of control Preventive, repressive measures In the practical part it is preoccupied with

preventive measures repressive measures related to infectious diseases Smallpox eradication

The distribution of the smallpox rash is usually similar to that shown here.

It is most dense on the face, arms and hands, legs and feet.

The trunk has fewer pocks than the extremities.

Smallpox eradication Smallpox is a disfiguring disease. Three out of ten cases may die. It is caused by variola virus. The disease is spread by secretions from the patient's mouth and nose, and by material from pocks or scabs. It is transmitted directly from one person to the next.

eradication Close contact with patients, or their clothing or bedding, is thus required for infection.

A patient who has developed the distinctive symptoms of smallpox will have been exposed to the virus about two weeks previously.

Smallpox eradication was officia IIy announced at the 33rd General Assembly WHO <u>8. May 1980.</u>