Functional morphology of kidneys Clearance

Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

Department of Physiology

Faculty of Medicine, Masaryk University

This presentation includes only the most important terms and facts. Its content by itself is not a sufficient source of information required to pass the Physiology exam.

Renal Functions

- Excretion of Waste Products and Toxins
- Control of Volume and Composition of Body Fluids, Osmolality
- Regulation of Acid-Base Balance
- Regulation of Blood Pressure
- Secretion, Metabolism and Excretion of Hormones
- Glukoneogenesis

Structure of Kidney

http://classes.midlandstech.edu/carterp/Courses/bio211/chap25/chap25.htm

Structure of Kidney

http://classes.midla ndstech.edu/carter p/Courses/bio211/c hap25/chap25.htm

Structure of Nephron

Ganong's Review of Medical Physiology, 23rd edition

renal cortical tissue (180×)

Structure of Nephron - Glomerulus

Guyton & Hall. Textbook of Medical Physiology

Structure of Nephron - Glomerulus

Structure of Nephron - Glomerulus

- High filtration rate in glomeruli provided by high permeability of glomerular membrane
- Protein passage barrier negative charge of all layers of glomerular membrane

Ganong 's Review of Medical Physiology

Ganong's Review of Medical Physiology, 23rd edition

> glomerulus

proximal convoluted tubule

Proximal convoluted tubule

> glomerulus

- proximal convoluted tubule
- loop of Henle

Loop of Henle, thin descending limb

thick ascending

limb

CULTAS N

Ganong's Review of Medical Physiology, 23rd edition

Ganong's Review of Medical Physiology, 23rd edition

> glomerulus

- proximal convoluted tubule
- loop of Henle

thin descending limb

thick ascending limb

CULTAS N

http://classes.midla ndstech.edu/carter p/Courses/bio211/c hap25/chap25.htm

Ganong's Review of Medical Physiology, 23rd edition

glomerulus

- proximal convoluted tubule
- loop of Henle
- distal convoluted tubule

Distal convoluted tubule

Ganong's Review of Medical Physiology, 23rd edition

glomerulus

- proximal convoluted tubule
- loop of Henle
- distal convoluted tubule
- collecting duct

Collecting duct

Urine Formation

Guyton & Hall. Textbook of Medical Physiology

Glomerular filtration
Tubular reabsorption
Tubular secretion
Urine excretion

Urine Formation

Guyton & Hall. Textbook of Medical Physiology

- creatinine
- electrolytes
- other waste products

- amino acids
- glucose

- PAH
- toxins
- organic base and acids

Urine Formation

Guyton & Hall. Textbook of Medical Physiology

creatinine

 other waste products

	Concentration in		_
Substance	Urine (U)	Plasma (P)	U/P Ratio
Glucose (mg/dL)	0	100	0
Na ⁺ (mEq/L)	90	140	0.6
Urea (mg/dL)	900	15	60
Creatinine (mg/dL)	150	1	150

- PAH
- toxins
- organic base and acids

GFR = 125 ml/min = 180 l/day FF = 0.220% of plasma filtered! Renal blood flow **Glomerular filtration** 70 140 210 Arterial pressure (mm Hg)

Ganong's Review of Medical Physiology, 23rd edition

Glomerular filtration rate (GFR) depends on:

- Capillary filtration coefficient K_f (permeability and area of glomerular membrane; mesangial cells)
- 2) Balance of hydrostatic and coloid osmotic forces

GFR = $K_f \cdot$ net filtration pressure

Glomerular filtration rate (GFR) depends on:

- Capillary filtration coefficient K_f (permeability and area of glomerular membrane; mesangial cells)
- 2) Balance of hydrostatic and coloid osmotic forces

GFR = $K_f \cdot$ net filtration pressure

GFR = $K_f \cdot$ net filtration pressure

Guyton & Hall. Textbook of Medical Physiology

Under physiological conditions:

net filtration pressure = $P_G + \pi_B - P_B - \pi_G = 60 + 0 - 18 - 32 = 10$ mmHg

$$\mathsf{GFR} = K_f \cdot (P_G + \pi_B - P_B - \pi_G)$$

Vas afferens, vas efferens

- input and output of high-pressure glomerular capillary net
- glomerular blood flow =

$$\frac{\mathsf{P}_{\mathsf{v.a.}} - \mathsf{P}_{\mathsf{v.e.}}}{\mathsf{R}_{\mathsf{v.a.}} + \mathsf{R}_{\mathsf{v.e.}} + \mathsf{P}_{\mathsf{v.e.}}}$$

- ↑ resistance of vas aff. or vas eff. → ↓ renal blood flow (if the arterial pressure is stable)
- control the glomerular filtration pressure:

constriction of *vas aff*. $\rightarrow \downarrow$ glomerular pressure $\rightarrow \downarrow$ filtration constriction of *vas eff*. $\rightarrow \uparrow$ glomerular pressure $\rightarrow \uparrow$ filtration

Active Transport Mechanisms

- 1) Primary active transport
- 2) Secondary active transport
- 3) Pinocytosis

(big molecules, e.g. proteins, namely in the proximal tubule)

Active Transport Mechanisms

1) Primary active transport

Guyton & Hall. Textbook of Medical Physiology

Active Transport Mechanisms

1) Primary active transport

- Na⁺/K⁺ ATPase
- H⁺ ATPase
- H⁺/K⁺ ATPase
- Ca²⁺ ATPase

Active Transport Mechanisms

2) Secondary active transport

Active Transport Mechanisms

Substances using active transport show the so called transport maximum (given by saturation of the transporter).

Active Transport Mechanisms

Substances using active transport show the so called transport maximum (given by saturation of the transporter).

	Substance	Transport Maximum
	Glucose	375 mg/min
	Phosphate	0.10 mM/min
	Sulfate	0.06 mM/min
	Amino acids	1.5 mM/min
	Urate	15 mg/min
	Lactate	75 mg/min
	Plasma protein	30 mg/min
ecretion		
ecretion	Substance	Transport Maximum
ecretion	Substance Creatinine	Transport Maximum 16 mg/min

Active Transport Mecha

- 1) Primary active transport
- 2) Secondary active transport
- 3) Pinocytosis (big molecules, *e.g.* proteins, namely in the pr

Passive Transport Mechanisms

- 1) Reabsorption of H₂O by osmosis
 - in the proximal tubule (highly permeable for H₂O)
 - active reabsorption of solutes \rightarrow lumen-intersticium concentration gradient \rightarrow H₂O osmosis into intersticium
- 2) Reabsorption of solutes by diffusion
 - CI⁻ (Na⁺ into intersticium, reabsorption of H₂O by osmosis)
 - urea (reabsorption of H₂O by osmosis)

Physical Forces in Peritubular Capillaries and in Renal Intersticium

 tubular reabsorption is controlled by hydrostatic and coloid osmotic forces (similary to GFR)

GFR = $K_f \cdot$ net filtration pressure TRR = $K_f \cdot$ net reabsorptive force

Physical Forces in Peritubular Capillaries and in Renal Intersticium

Proximal Tubule

- complete reabsorption of substances playing key roles for the organism (glucose, amino acids)
- partial reabsorption of substances important for the organism (ions Na⁺, K⁺, Cl⁻, *etc.*)
- 3) reabsorption of water
- 4) secretion of H⁺
- 5) reabsorption of HCO_3^-

Result:

isoosmotic fluid, notably decreased volume

Urine Formation – Tubular Processes Loop of Henle

- 1) thin descending part passive reabsorption of water (osmosis)
- thick ascending part active reabsorption of ions (Na⁺/K⁺/2Cl⁻ symport), secretion of H⁺, reabsorption of HCO₃⁻

Urine Formation – Tubular Processes Loop of Henle

- 1) thin descending part passive reabsorption of water (osmosis)
- thick ascending part active reabsorption of ions (Na⁺/K⁺/2Cl⁻ symport), secretion of H⁺, reabsorption of HCO₃⁻

Urine Formation – Tubular Processes Distal tubule

- 1) juxtaglomerular apparatus
- active reabsorption of solutes similar to the thick ascending loop of Henle, also no permeability for urea and water – the so called dilution segment (dilutes the tubular fluid)

Urine Formation – Tubular Processes Collecting duct (+ end of distal tubule)

principal cells – reabsorption of Na⁺ and water (ADH), secretion of K⁺

Urine Formation – Tubular Processes Collecting duct (+ end of distal tubule)

- principal cells reabsorption of Na⁺ and water (ADH), secretion of K⁺
- 2) intercalated cells secretion of H⁺, reabsorption of HCO₃⁻ and K⁺

Urine Formation – Tubular Processes Collecting duct – medullar part

- 1) reabsorption of Na⁺ and Cl⁻, water (ADH), urea
- 2) secretion of H^+ , reabsorption of HCO_3^-

= the volume of plasma that is cleared of the substance by kidneys per unit time

Using *clearance*, we can quantified the excretion ability of kidneys, the velocity of renal blood flow and even basic functions of kidneys (GFR, tubular reabsorption and secretion).

Determination of renal plasma flow velocity (RPF)

Determination of glomerular filtration rate (GFR)

Clearance of a substance that is fully filtered in the glomerulus and is not reabsorbed/secreted in tubules.

Inulin

Creatinine

Calculation of Filtration Fraction (FF)

FF is the fraction of plasma filtered through the glomerular membrane.

 $FF = \frac{GFR}{RPF} = \frac{125 \text{ ml/min}}{650 \text{ ml/min}} = 0.19 \longrightarrow \frac{20\% \text{ of plasma is filtered}}{\text{in the glomerulus}}$

Calculation of Tubular Reabsorption/Secretion

A. $GFR \cdot P_S > V \cdot U_S$ substance reabsorbed

B. GFR \cdot P_S < V \cdot U_S substance secreted

