Modulatory Systems of the Brain

Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

Department of Physiology, Faculty of Medicine, Masaryk University

This presentation includes only the most important terms and facts. Its content by itself is not a sufficient source of information required to pass the Neuroscience exam.

Sources:

- Principles of Neural Science (5th ed.), Kandel et al. (2013)
- Ganong's Review of Medical Physiology, (24th ed.), Barret (2010)
- Textbook of Medical Physiology (11th ed.), Guyton and Hall (2006)
- Color Atlas of Physiology (6th ed.), Silbernagl and Despopoulos (2009)

Brain stem ^A

- contains ascending (sensory) tracts and descending (motor) tracts
- nuclei of the cranial nerves
- contains centers that control respiration and heartbeat
- contains centers crutial for consciousness and sleep

The brain stem is a modulatory center that orchestrates the activity of the rest of the CNS, ensuring that its activity is optimized.

six neurochemical modulatory systems

- mediated by small groups of neurons which project widely
- neurotransmitters:
 - acetylcholine
 - monoamines (catecholamines norepinephrine, epinephrine, dopamine; serotonin; histamine)
- enable and modulate many of the higher-order behaviours – processes localized in the forebrain (memory, language, compassion)
- involved in pathophysiology, drug targets

Monoamines (catecholamines - norepinephrine, epinephrine, dopamine; serotonin; histamine)

 Neurons using these neurotransmitters fire action potentials in a highly regular pattern.

(action potentials followed by a slow membrane depolarization that results in the next spike - intrinsic pacemaker currents)

Firing pattern of a locus ceruleus neuron

continuous delivery of monoamines (e.g. basal ganglia)

Monoamines (catecholamines - norepinephrine, epinephrine, dopamine; serotonin; histamine)

 some axon terminals release neurotransmitter diffusely to many targets at once

Monoamines (catecholamines - norepinephrine, epinephrine, dopamine; serotonin; histamine)

responses both fast and slower

Cholinergic neurons – share some of the properties (*e.g.* acting also through G protein-coupled muscarinic receptors).

- Some neurons in the brain stem that project to the forebrain control wakefulness and sleep by changing arousal.
- located namely in the rostral pons and caudal midbrain
- reticular formation, reticular activating system
- ascending arousal system (AAS)
 - remarkable connectivity (widespread projections almost to every part of the CNS)
 - together with sleep-promoting regions in other parts of the brain regulates sleep and waking
 - damage of its projections in the thalamus and hypothalamus leads to coma

Major parts:

Regulate sleep and waking together with other neurons:

AAS activates the cortical neurons:

- directly
- indirectly by modulating activity of neurons:
 - in the hypothalamus
 - in the basal forebrain
 - in the thalamus

Activation of the thalamic and cortical neurons is caused by different mode of firing of the neurons.

- during sleep firing in bursts
- during wakefullness firing in single spikes

Following application of acetylcholine, norepinephrine, serotonin, and histamine.

Brain stem – Modulatory Function Regulation of Brain Functions Other than Arousal

- 1. Optimization of Cognitive Performance
- 2. Involvement in Autonomic Regulations and Breathing
- 3. Modulation of Pain and Anti-nociceptive Pathways
- 4. Facilitation of Motor Activity

1. Optimization of Cognitive Performance

- locus ceruleus (NE) important role in attention
- monoaminergic inputs to dorsolateral prefrontal cortex improve the working memory
- dopamine is also linked to reward-based learning increased activity of dopaminergic neurons when a reward is unexpectedly given

The same pathways are involved in addiction to drugs of abuse.

2. Involvement in Autonomic Regulations and Breathing

- maintenance of resting vascular tone
- changes of vascular tone at specific situations:
 e.g. orthostasis disinhibits the neurons baroreflex depressor reflexes by inhibition of the preganglionic sympathetic neurons e.g. due to deep pain

2. Involvement in Autonomic Regulations and Breathing

Serotonin

- regulates many autonomic functions
- stimulation of serotoninergic neurons (raphe nuclei in medulla)
 - \rightarrow \uparrow heart rate and blood pressure
 - \rightarrow ↑ respiratory motor

2. Involvement in Autonomic Regulations and Breathing

Serotonin

- serotoninergic neurons as central chemoreceptors

(in the medulla, increased firing at higher pCO₂)

→ ↑ ventilation

(increased firing at higher pCO₂)

→ ↑ arousal, anxiety, changes in the cerebral blood flow

(important for survival at airways obstruction, SIDS)

Breathing

3. Modulation of Pain and Anti-nociceptive Pathways

- acute pain beneficial to avoid/reduce injury
- chronic pain may be maladaptive

Descending monoamine projections to the dorsal horn of the spinal cord modulate pain perception.

Treatment of:

- migraine headaches agonists of $5-HT_{1B}$ and $5-HT_{1D}$ receptors (triptans)
- migraine headaches and chronic pain blockers of monoamine reuptake (antidepressant drugs including SSRIs)

4. Facilitation of Motor Activity

Dopaminergic system – critical for normal motor performance, **release inhibition on motor responses** (Parkinson disease).

Serotoninergic neurons – important for generation of motor programs (serotonin syndrome).

Noradrenergic neurons – facilitates excitatory inputs to motor neurons, namely in stereotypic and repetitive behaviours (through β and α 1 receptors; stress – exaggerated motor responses, tremor; β -blockers - to reduce certain type of tremor, musicians)

Brain stem – Modulatory Function **Summary**

Ascendent projections

- to the forebrain
- control of various aspects of mood and cognition (AAS - arousal and sleep, attention, memory, reward-based learning)

Descendent projections

- to the spinal cord
- regulation of autonomic, somatosensory (modulation of pain perception), and motor functions

Plays an important role in normal brain function!