Rheology of blood circulation

1. Basic physical laws of liquids

Law of Pascal

Liquid column causes a pressure (hydrostatic pressure) that is directly proportional to the height of the liquid column (h), density of the liquid (ρ) and gravitational acceleration (g).

Effect of gravity on arterial and venous pressure

Per each 10 cm
$\Delta \mathrm{p}=\Delta \mathrm{h} . \rho_{\text {krve }} \cdot \mathrm{g}=0,1 \cdot 1065 \cdot 9,81$
$=1045 \mathrm{~Pa}=7.8 \mathrm{~mm} \mathrm{Hg}$

Law of Laplace

Relation between distending pressure ($\mathrm{P}\left[\mathrm{N} / \mathrm{m}^{2} \mathrm{]}\right.$) and tension in the wall of hollow object ($\mathrm{T}[\mathrm{N} / \mathrm{m} \mathrm{l}$) :

For vessel:

$$
\mathrm{R}_{2}=\infty \Rightarrow \mathrm{T}=\mathbf{P} \cdot \mathbf{R}
$$

Considering thickness of vessel
wall (h [m]): T=P•R/h [N/m²]
\mathbf{R}_{1} and \mathbf{R}_{2} are the biggest and the smallest radii of curvature

For sphere:

$$
R_{1}=R_{2} \Rightarrow T=P \cdot R / 2
$$

Characteristics of vessels

P		R	P.R	h	P.R/h
vessel	$\begin{gathered} \mathrm{P} \\ {[\mathrm{kPa}]} \end{gathered}$	radius	tension (N / m)	wall thickness	tension ($\mathrm{N} / \mathrm{m}^{2}$)
aorta	13,3	$\begin{gathered} 13 \mathrm{~mm} \\ \text { nebo méně } \end{gathered}$	170	2 mm	85000
arteries	12	5 mm	60	1 mm	60000
arterioles	8	$150-62 \mu \mathrm{~m}$	1,2-0,5	$20 \mu \mathrm{~m}$	40000
capillaries	4	$4 \mu \mathrm{~m}$	1,6.10-2	$1 \mu \mathrm{~m}$	16000
venules	2,6	$10 \mu \mathrm{~m}$	2,6.10-2	$2 \mu \mathrm{~m}$	13000
veins	2	$\begin{gathered} 200 \mu \mathrm{~m} \mathrm{a} \\ \text { více } \end{gathered}$	0,4	$0,5 \mathrm{~mm}$	800
vena cava	1,33	16 mm	21	$1,5 \mathrm{~mm}$	14000

Continuity equation

The volume of fluid flowing through a tube (vessel) per unit of time ($\mathrm{Q}[/ / \mathrm{s}]$) is constant.

$$
\left.\underset{\mathrm{v} \text { - velocity }}{\mathbf{Q}=\mathbf{S}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}=\mathbf{~ c o n s t a n t}} \quad \stackrel{\mathrm{s}_{1} \cap \text { area }}{ } \xrightarrow{\mathrm{v}_{1}}\right) \xrightarrow{\mathrm{v}_{2}} \mid \mathrm{s}_{2}
$$

Average blood velocity in vessels

$$
\mathbf{v}=\frac{\mathbf{Q}}{\mathbf{S}}
$$

vessel	diameter	number	total area	velocity
aorta	$\sim 2.6 \mathrm{~cm}$	1	$\sim 5.3 \mathrm{~cm}^{2}$	$\sim \mathbf{1 8} \mathbf{~ c m} / \mathrm{s}$
arterioles	$20-50 \mu \mathrm{~m}$	$\sim 5 \times 10^{6}$	$\sim 60 \mathrm{~cm}^{2}$	$\sim 1.5 \mathrm{~cm} / \mathrm{s}$
capilaries	$4-9 \mu \mathrm{~m}$	$\sim 5 \times 10^{9}$	$\sim 2000 \mathrm{~cm}^{2}$	$\sim \mathbf{0 . 0 4 \mathrm { cm } / \mathbf { s }}$
venules	$\sim 20 \mu \mathrm{~m}$	$\sim 32 \times 10^{6}$	$\sim 100 \mathrm{~cm}^{2}$	$\sim 1 \mathrm{~cm} / \mathrm{s}$
vena cava	$\sim 3 \mathrm{~cm}$	2	$\sim 14 \mathrm{~cm}^{2}$	$\sim 7 \mathrm{~cm} / \mathrm{s}$

Relation between total cross-sectional area of vessels and mean flow velocity

Bernoulli's principle

Law of energy conversation for fluid :

$$
\frac{1}{2} \rho v^{2}+\text { h. } \rho \cdot g+P=\text { costant }
$$

Implication at aortic aneurysm

$$
\begin{gathered}
\mathrm{S}_{1} \mathrm{v}_{1}=\mathrm{S}_{2} \mathrm{v}_{2} \text { a je-li } \mathrm{S}_{1}<\mathrm{S}_{2}, \text { musí platit: } \mathrm{v}_{1}>\mathrm{v}_{2} \\
\frac{1}{2} \rho v_{1}^{2}+\hbar . \rho g+P_{1}=\frac{1}{2} \rho v_{2}^{2}+\hbar \rho g+P_{2} \\
\frac{1}{2} \rho v_{1}^{2}+P_{1}=\frac{1}{2} \rho v_{2}^{2}+P_{2}
\end{gathered}
$$

For $\mathbf{v}_{\mathbf{2}}<\mathrm{v}_{\mathbf{1}} \Rightarrow \mathrm{P}_{\mathbf{2}}>\mathrm{P}_{1}$

Poiseuille - Hagen equation

$$
Q=\frac{\pi \cdot \Delta P \cdot r^{4}}{8 \cdot I \cdot \eta}
$$

The flow of liquid in the cylindrical tube (Q) is directly proportional to the pressure difference between two ends of the tube ($\Delta \mathrm{P}=\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}$), to the fourth power of the tube radius (r) and inversely proportional to tube length ($)$ and to the viscosity of liquid (η).

Limitation:

- For stationary flow in Newtonian fluids where viscosity is constant and independent on flow velocity.

$$
\mathrm{Q}=\frac{\pi \cdot \Delta \mathrm{P} \cdot \mathrm{r}^{4}}{0}
$$

$$
8 \cdot I \cdot \eta
$$

$$
\Leftrightarrow
$$

$Q=\frac{\Delta P}{R_{v}}$

Vascular resistance $\left(R_{v}\right)$: a consequence of the friction between fluid and vessel wall.

$$
\mathbf{R}_{v}=\frac{\Delta \mathbf{P}}{\mathbf{Q}}=\frac{8 \cdot \| \cdot \eta}{\pi \cdot r^{4}}
$$

Parallel arrangement of vessels

$$
\frac{1}{\mathbf{R}_{\mathbf{c}}}=\frac{1}{\mathbf{R}_{1}}+\frac{1}{\mathbf{R}_{2}}+\ldots
$$

$$
\text { pro } R_{1}=R_{2}=R_{3}=R_{n}
$$

$$
R_{c}=R / n
$$

Series arrangement of vessels

$$
\mathbf{R}_{\mathrm{c}}=\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}+\ldots
$$

$$
\text { pro } R_{1}=R_{2}=R_{3}=R_{n}
$$

$$
\mathbf{R}_{\mathrm{c}}=\mathbf{R} \cdot \mathbf{n}
$$

Relation between vessel radius and peripheral resistance

Total peripheral resistance (TPR) of vascular system

$T P R=\frac{\Delta P}{Q}=\frac{P_{a}-P_{v}}{Q} \approx \frac{P_{a}}{Q}=\frac{93}{90} \approx 1 \frac{\mathrm{mmHg} \mathrm{s}}{\mathrm{ml}}$

For constant $\mathrm{Q}: \uparrow T P R \Rightarrow \uparrow \mathrm{P}_{\mathrm{a}} \Rightarrow$ hypertension, \ldots.
2. Rheological features of blood and vessels

Blood viscosity

$$
\mathbf{R}_{\mathrm{v}}=8 \cdot \mathrm{I} \cdot \eta /\left(\pi \cdot \mathrm{r}^{4}\right)
$$

Effect of hematocrit

Effect of diameter in small vessels

Other factors causing increase of viscosity:

- decrease of blood flow velocity
- elevation of plasma proteins

Velocity profile of the blood flow in vessels

- In small arteries the velocity profile of the flowing blood has a parabolic shape. In the bigger arteries it has a piston shape.
- The layer close to vessel wall is poor of erythrocytes.

Laminar and turbulent flow

Velocity profile in laminar and turbulent flow

The character of the flow is determined by Reynolds number

Pathological states causing turbulent flow: aneurisma, stenosis, arteriosclerosis, decreased blood viscosity, .

Elasticity of vessels

$$
\begin{aligned}
& \text { compliance } \\
& C=\frac{\Delta V}{\Delta P}
\end{aligned}
$$

Pulse wave velocity (PWV)

Moens-Korteweg (1878)

$$
P W V=\sqrt{\frac{E_{\text {inc }} \cdot h}{2 \cdot r \cdot \rho}}
$$

In aorta PWV = 4-6 m/s

Mechanisms of venous return

3. Blood circulation and pressure

Blood circulation

Blood pressure

Blood pressure (BP) is the pressure exerted by circulating blood upon the walls of blood vessels.

Left	Arteries	Arterioles	Capillaries	Venules, ventricle

$$
P_{\text {mean }} \cong P d+\frac{1}{3}\left(P_{s}-P d\right)
$$

Dependence of blood pressure on cardiac output and vascular parameters

$$
\mathrm{Q}=\frac{\Delta \mathrm{P}}{\mathrm{R}}
$$

$\mathbf{P}_{\mathrm{a}, \text { mean }}-\mathbf{P}_{\mathrm{v}, \text { mean }}=\mathbf{Q} \cdot \mathbf{R}$
$\mathbf{P}_{\mathrm{a}, \text { mean }}=\mathbf{S V} \cdot \mathbf{H F} \cdot \mathbf{R}+\mathbf{P}_{\mathrm{v}, \text { mean }}$

$$
C=\frac{\Delta V}{\Delta P}
$$

$+\mathbf{S V} \uparrow$

$+\mathbf{R} \downarrow$
$P \mathrm{PP} \leq \mathrm{SV}_{\mathrm{C}}$

Model of blood pressure changes in aorta

