(VIII.) blood pressure in man (IX.) Non-invasive methods of blood pressure measurement Physiology - practicals ### **Arterial blood pressure curve** Blood pressure (BP): pressure on vascular vall (continual variable) Mean arterial pressure (MAP): mean value of blood pressure in the inter-beat interval (IBI) - area under MAP = area above MAP - aproximation: $MAP \approx DBP + 1/3 PP (PP = SBP DBP)$ #### **Definition:** **SBP** - maximum of BP in the inter-beat interval **DBP** - minimum of BP in the inter-beat interval Attention: Values of SBP and DBP varies in different parts of cardiovascular system #### MAP is a function of cardiac output and total peripheral resistance - SBP is given mainly by CO - DBP is given mainly by TPR ## **Blood pressure regulation** • **Short-term** – neural control, mainly baroreflex Medium-term – hormonal regulation, renin-angiotensinaldosteron system (RAAS) Long-term – hormonal regulation of blood volume ## **Short-term BP control: Baroreflex** #### **Autonomic nervou system:** sympathetic nerves (↑ BP, HR, SV a TPR) X parasympathetic nerves (↓BP, HR, SV a TPR) Baroreflex: regulation of BP via changes of HR and TPR baroreceptors – sinus caroticus + aorticus afferentation: n. vagus, n. glosopharingeus Cardiac branch of baroreflex: efferentation: n. vagus - SA node sympathetic efferentation: change of HR and cardiac contractility \uparrow BP $\rightarrow \downarrow$ HR and vice versa Peripheral branch of baroreflex: efferentation: sympathetic vascular innervation \uparrow BP $\rightarrow \downarrow$ TPR and vice versa (vasoconstriction, venoconstriction) ## **Blood pressure changes** #### **Short-term influences** - blood volume influence to SV (bleeding, dehydration) - external pressure to the vessels intrathoracal a intraabdominal pressure (cough, defecation, childbirth, artificial ventilation) - position orthostasis: higher DBP (\uparrow TPR) a lower STK (\downarrow venous return $\rightarrow \downarrow$ heart filling \rightarrow Starling principle $\rightarrow \downarrow$ cardiac contraction $\rightarrow \downarrow$ SV) - CNS emotions, mental stress,... - physical load BP changes depend on intensity, duration and type of exercise - heat (↓ TPR), cold (↑ TPR) - alcohol, medicaments,... #### **Long-term influences** - age (the fastest changes during childhood and adolescence) - sex (men: higher BP) ## Methods of the arterial blood pressure measurement In practicals: Palpatory (sphygmomanometer) Auscultatory (sphygmomanometer, stethoscope) Oscillometric #### **Another approaches:** 24-hour blood pressure monitoring Photoplethysmografic (volume-clamp method, Peňáz) ## Laminar / turbulent flow, Korotkoff sounds $$Re = \frac{v \cdot S \cdot \rho}{\eta}$$ laminar flow Re < 2000 turbulent flow Re > 3000 Reynolds number Re: predicts the transition from laminar to turbulent of flo v: velocity of blood flow **S**: area of vascular lumen $(\pi . r^2)$ **ρ**: density of blod η: viskosit of blood (higher in anemy) closely behind narrowing of the artery: $S_1 < S_2$ a $v_1 \approx v_2 \rightarrow Re_1 < Re_2 \rightarrow$ turbulent flow ## Principles of blood pressure measurement ## 24-hour blood pressure monitoring BP decrease during night: 10 - 15% ## During BP measurement following rules must be observed - Patient is sitting for a few minutes before the measurement. - Only validated apparatus must be used. - Perform at least two measurements in the course of 1–2 minutes. - Use cuff of standard size (12–13 cm width and 35 cm length); however smaller and bigger cuffs must be available for patients with smaller or bigger size of arm, respectively. - Cuff must be always at the level of heart of examined person. - Pressure in the cuff must be decreased slowly: 2mmHg/s. | methods | advantages | disadvantages | measured
value | |---------------------------------------|--|---|---| | auscultatory | exact estimation of SBP/DBPeasy, it doesnt require electricity | subjective, experience is necesarySBP/DBP from differen IBI | STK a DTK | | oscillometric | exact estimation of MAP automatic, fast BP can be measured by layman, cheap (home measurement) | DBP/SBP is calculated (dependence on model, influence on shape of puls wave) SBP/DBP from different IBI false values during arrhytmia | MAP,
sometimes
SBP
(it depends
on device) | | 24 – hour BP
monitoring | BP record from whole day diagnosis of white-coat
hypertension | disruptive influence of measuring
(during sleeping) SBP/DBP from different IBI | BP is
mesured
each
15 – 60 min | | photople-
thysmographic
(Peňáz) | continual BP record possibility of beat-to beat
SBP/DBP calculation (BP
variability analysis) | measuring on the finger, brachial BP recalculating expensive device | continual BP
record | | | | | | # Diagnosis of hypertension | | blood
pressure | SBP
[mmHg] | DBP
[mmHg] | posible complications | |-------------------|---|---------------|---------------|---| | normal | optimal | <120 | <80 | | | | normal | 120 – 129 | 80 – 84 | | | | high normal | 130 – 139 | 85 – 90 | | | hyper-
tension | 1. stage | 140 – 159 | 90 – 99 | without organ changes | | | 2. stage | 160 – 179 | 100 – 109 | hypertrophy of L ventricle, proteinuria, angiopathy, | | | 2. stage3. stage | > 180 | > 110 | morphological and functional changes of some organs, retinopathy, heart and renal insufficiency, ischemia of CNS, bleeding in CNS | - isolated systolic hypertension: SBP> 140 and DBP <90 - high normal BP annual monitoring recomended - home measurement to exclude white coat hypertension - hypertension is diagnosed when: - average BP from 4 5 examinations is > 140/90 - BP during a home measurement repeatedly > 135/80 - mean BP from 24-hour monitoring is > 130/80 ## Changes of blood pressure during exercise - increase of BP depends on the type, intensity and duration of the load - sympathetic activation: changes in the cardiovascular system serve to satisfy metabolic needs of working muscle - impact of exercise on blood pressure - increased cardiac output $\rightarrow \uparrow STK$ - Redistribution of blood in the body metabolic vasodilation in muscle (muscle increases blood flow), vasoconstriction in the GIT, skin and kidneys \rightarrow maintaining or slight change in DBP (depending on the extent of the TPR decrease) - vasoconstriction in the skin is temporary, since thermoregulatory mechanisms dominate - DBP increases during isometric muscle work (eg. weightlifting) - after exercise: decrease of BP on the initial or a slightly lower value, the blood flow in the muscle remains elevated until recovery - Recovery interval is determined by the parasympathetic tone (can be increased training)