Counter-Current System Regulation of Renal Functions

Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

Department of Physiology Faculty of Medicine, Masaryk University

This presentation includes only the most important terms and facts. Its content by itself is not a sufficient source of information required to pass the Physiology exam.

Water Transport in Tubules

Water Transport in Tubules Proximal Tubule

Intensive transport of solutes from tubules to interstitium - osmotic gradient - water reabsorption

Facilitated by water channels (aquaporin 1; not guided by ADH!)

Isoosmotic fluid, volume notably decreased (60-70% of solutes and water reabsorbed)

Water Transport in Tubules Loop of Henle

- 1) thin descending part passive reabsorption of water (osmosis)
- thick ascending part impermeable for water, intensive reabsorption of solutes

Hypotonic fluid, volume decreased

Water Transport in Tubules Distal Tubule

- the first part analogical to the thick ascending loop of Henle – impermeable for water, reabsorption of solutes (reabsorption of Na⁺ regulated by aldosteron)
- the next part analogical to the cortical part of collecting duct – water reabsorption regulated by ADH (aquaporin 2)

Tonicity of the outflowing fluid depends on the actual level of ADH.

Water Transport in Tubules Collecting Duct

- the cortical part water reabsorption regulated by ADH (aquaporin 2), isotonic intersticium
- the medullar part water reabsorption regulated by ADH (aquaporin 2), hypertonic intersticium

Tonicity of the outflowing fluid depends on the actual level of ADH.

Despopoulos, Color Atlas of Physiology © 2003

5 Countercurrent multiplier (Henle's loop)

Despopoulos, Color Atlas of Physiology © 2003

Hyperosmotic Renal Medulla - Role of Loop of Henle

- Active transport of Na⁺, co-transport of Na⁺ with K⁺ and Cl⁻ from ascending loop of Henle; gradient even 200 mOsm/l
- 2) Impermeability of ascending loop of Henle for water

Hyperosmotic Renal Medulla - Role of Loop of Henle

- Active transport of Na⁺, co-transport of Na⁺ with K⁺ and Cl⁻ from ascending loop of Henle; gradient even 200 mOsm/l
- 2) Impermeability of ascending loop of Henle for water
- 3) Permeability of descending loop of Henle for water

Hyperosmotic Renal Medulla - Role of Loop of Henle

- Active transport of Na⁺, co-transport of Na⁺ with K⁺ and Cl⁻ from ascending loop of Henle; gradient even 200 mOsm/l
- 2) Impermeability of ascending loop of Henle for water
- 3) Permeability of descending loop of Henle for water

Hyperosmotic Renal Medulla - Role of Loop of Henle

Hyperosmotic Renal Medulla - Role of Vasa Recta

Ganong's Review of Medical Physiology, 23rd edition

Hyperosmotic Renal Medulla - Role of Vasa Recta

Hyperosmotic Renal Medulla - Role of Urea

Water Diuresis

- after drinking of a higher amount of hypotonic fluid
- drinking itself \rightarrow slightly \downarrow ADH secretion
- water reabsorption → ↓ plasma osmolarity osmoreceptors in the hypothalamus → notable ↓ ADH secretion → ↓ water reabsorption in tubulus → ↑ diuresis

Water Diuresis

Water Intoxication

- the water intake per time > the amount of water which can be excreted (maximal diuresis ~16 ml/min)
- \rightarrow cellular edema, symptoms of water intoxication
- iatrogenic

Osmotic Diuresis

- induced by presence of non-absorbed osmotically active solutes in renal tubules (e.g. glucose diabetes mellitus)
- non-absorbed solutes in the proximal tubule → osmotic effect – retention of water in the tubulus

↓ transepithelial gradient for Na⁺ → inhibition of Na⁺ reabsorption in the proximal tubule → Na⁺ retained in the tubule ~ further osmotic load → further retaining of water in the tubule

Osmotic Diuresis

- more isotonic fluid with higher total amount of Na⁺
 into the loop of Henle → ↓ reabsorption of solutes
 → ↓ hypertonicity of the renal medulla
- more fluid flows through other parts of tubulus + ↓
 hypertonicity of the renal medulla → ↓ water
 reabsorption in the collecting duct → ↑ diuresis,
 urine with an increased amount of solutes

Regulation of Renal Functions

Regulation of Renal Blood Flow

- 1) Myogenic Autoregulation
- 2) Neural Regulation
- 3) Humoral Regulation

Ganong´s Review of Medical Physiology, 23rd edition

1) Myogenic Autoregulation

- dominates
- provides stable renal activity by maintaining stable blood flow at varying systemic pressure

- 2) Neural Regulation
 - conformed to demands of systemic circulation
 - sympathetic system NE

light exertion (both emotional and physical) + upright body posture $\rightarrow \downarrow$ renal blood flow but without \downarrow GFR

higher \uparrow of sympathetic tone - during anesthesia and pain - GFR may already \downarrow

in healthy people - minor impact

- 3) Humoral Regulation
 - contribute to regulation of systemic BP and regulation of body fluids
 - NE, E (from the adrenal medulla) constriction of aff. and eff. arterioles → ↓ renal blood flow and GFR

(small impact with the exception of serious conditions, for example serious bleeding)

3) Humoral Regulation

contribute to regulation of systemic BP and regulation of body fluids

- endothelin

constriction of aff. and eff. arterioles $\rightarrow \downarrow$ renal blood flow and GFR

released locally from the impaired endothel (physiological impact - hemostasis; pathologically increased levels at the toxemia of pregnancy, acute renal failure, chronic uremia)

3) Humoral Regulation

contribute to regulation of systemic BP and regulation of body fluids

- NO

continual basal production \rightarrow vasodilation \rightarrow stable renal blood flow and GFR

prostanglandins (PGE₂, PGI₂), bradykinin

 \rightarrow vasodilation

minor impact under physiological conditions non-steroidal anti-inflammatory agents during stress!

3) Humoral Regulation

- contribute to regulation of systemic BP and regulation of body fluids
- Renin-Angiotensine System

Ganong's Review of Medical Physiology, 23rd edition

Regulation of Renal Blood Flow Renin-Angiotensine System

3) Humoral Regulation

Tubuloglomerular Feedback

Regulation of Renal Functions

Regulation of Glomerular Filtration Regulation of Tubular Reabsorption

Regulation of Glomerular Filtration

GFR = $K_f \cdot$ net filtration pressure GFR = $K_f \cdot (P_G - \pi_B - P_B - \pi_G)$

control of the glomerular filtration pressure:

constriction of *vas aff*. $\rightarrow \downarrow$ glomerular pressure $\rightarrow \downarrow$ filtration constriction of *vas eff*. $\rightarrow \uparrow$ glomerular pressure $\rightarrow \uparrow$ filtration

- controls balance between the glomerular filtration and tubular reabsorption
- 1) Local Regulation
- 2) Neural Regulation
- 3) Humoral Regulation

Glomerulotubular Balance

1) Local Regulation

Physical Forces in Peritubular Capillaries and in Renal Intersticium

TRR =
$$K_f$$
 · net reabsorptive force

- $K_f \uparrow K_f \rightarrow \uparrow TRR and vice versa$
 - rather stable under physiological conditions

1) Local Regulation

Physical Forces in Peritubular Capillaries and in Renal Intersticium

TRR = $K_f \cdot \text{net reabsorptive force}$

- $P_c BP (\uparrow BP \rightarrow \uparrow P_c \rightarrow \downarrow TRR)$
 - resistance of aff. and eff. arterioles
- Π_c π in plasma
 - fitration fraction (\uparrow FF \rightarrow \uparrow π_{c} \rightarrow \uparrow TRR)

1) Local Regulation

Physical Forces in Peritubular Capillaries and in Renal Intersticium

1) Local Regulation

Physical Forces in Peritubular Capillaries and in Renal Intersticium – changes in intersticium (P_{if} , π_{if})

Guyton & Hall. Textbook of Medical Physiology

 \uparrow reabsorption $\rightarrow \downarrow P_{if} a \uparrow \pi_{if} \rightarrow \downarrow$ backleak

1) Local Regulation

Pressure Natriuresis and Pressure Diuresis

- mechanisms:

↑ GFR

(physiologically slight effect on diuresis autoregulation vs. impaired autoregulation at renal diseases)

$\downarrow TRR$

(\uparrow BP \rightarrow slight \uparrow P_c \rightarrow \uparrow P_{if} \rightarrow \uparrow backleak \rightarrow \downarrow TRR)

↓ formation of angiotensine II

2) Neural Regulation

Sympathicus

- $\rightarrow \uparrow$ reabsorption of salt and water
- small ↑ of its activity (α-rec. in epithelia):
 directly through ↑ reabsorption of Na⁺
- notable ↑ of its activity indirectly:
 → constriction of aff. and eff. arterioles → ↓ renal blood flow → ↓ P_c → ↑ TRR

- 3) Hormonal Regulation
 - impact separate regulation of reabsorption/excretion of particular solutes (other mechanisms are nonspecific – influence the total TRR!)
 - Aldosteron Angiotensine II Natriuretic peptides (namely ANP)
 - Antidiuretic hormone
 - Parathormone
 - Urodilatin (renal NP)

3) Hormonal Regulation

Aldosteron Angiotensine II

- 3) Hormonal Regulation *Natriuretic peptides*
 - increased tension of atrial cardiomyocytes
 - \rightarrow \uparrow secretion of ANP:
 - → ↓ reabsorption of salt and water directly (namely in the collecting ducts)
 - $\rightarrow \downarrow$ secretion of renin $\rightarrow \downarrow$ angiotensine II $\rightarrow \downarrow$ TRR

(congestive heart failure)

- 3) Hormonal Regulation
 - Antidiuretic hormone (ADH)
 - controls excretion of water
 - ↑ osmolality of plasma (osmoreceptors)
 - \rightarrow \uparrow secretion of ADH V₂ receptors \rightarrow water channels (aquaporins 2)
 - \rightarrow \uparrow reabsorption of water by osmosis

- 3) Hormonal Regulation
 - Parathormone
 - controls excretion of Ca²⁺
 - ↓ calcemia
 - \rightarrow \uparrow secretion of parathormone:
 - → ↑ tubular reabsorption of Ca²⁺ (namely in the distal tubule)
 - $\rightarrow\downarrow$ tubular reabsorption of phosphate in the proximal tubule
 - $\rightarrow \uparrow$ tubular reabsorption of Mg^{2+} in the loop of Henle

Filling and emptying of the bladder

