MICROCIRCULATION

FUNCTIONAL ANATOMY

Microcirculation is circulation of the blood through the smallest vessels of the body – arteriols, capillaries and venules.

The principal function of the microcirculation is to permit the transfer of substances (water, solutes, gases) between the vascular system and the tissues.

STRUCTURE OF VESSEL WALL

ULTRASTRUCTURE OF CAPILLARY

MOVEMENT OF FLUID ACCROSS CAPILLARY WALL

The diffusion, filtration and resorption of water across capillary wall occur through Intercellular clefts, pores and fenestrations.

PRESSURE GRADIENTS ACROSS THE WALL OF CAPILLARY

EXCHANGE OF FLUID VIA CAPILLARIES

Net filtration pressure

Net resorption pressure

$([P_c - P_i] - \sigma [\pi_c - \pi_i])$ - effective filtration pressure

STARLING'S EQUATION

$$J_v = K_f([P_c - P_i] - \sigma[\pi_c - \pi_i])$$

- J_v NET FLUID MOVEMENT ACROSS CAPILLARY WALL
- K_f Filtration coefficient
 - P_c capillary hydrostatic pressure
 - P_i interstitial hydrostatic pressure
 - $\boldsymbol{\pi}_{z}$ capillary oncotic pressure
 - π_i interstitial oncotic pressure
 - $\boldsymbol{\sigma}$ coefficient permeability

CAUSES OF INCREASED INTERSTITIAL FLUID VOLUME (EDEMA)

MOVEMENT OF SOLUTES ACCROSS CAPILLARY WALL

• **DIFFUSION** - if there is, for a certain solute, a concentration difference between the plasma and interstitial space the solute diffuses across the capillary wall. Lipid-soluble molecules (e.g. O_2 , CO_2) move across the capillary wall directly while lipid insoluble molecules (e.g. ions, urea) move across the capillary wall by Intercellular clefts, pores or fenestrations.

• **SOLVENT DRAG** - The dissolved particles are dragged through the capillary wall along with filtered and reabsorbed water.

!!! TO REMEMBER !!!

Four forces known as Starling forces determine net fluid movement across the capillary membranes.

 P_c = Capillary Pressure \rightarrow Tends to push fluid out of the capillary.

 P_i = Interstitial Fluid Pressure \rightarrow Tends to push fluid into the capillary.

 π_{c} = Plasma Colloid Osmotic Pressure \rightarrow Tends to cause osmosis of fluid into capillary.

 π_i = Interstitial fluid colloid osmotic pressure \rightarrow Tends to cause osmosis of fluid out of the capillary

Effective filtration pressure = $((P_c - P_i) - (\pi_c - \pi_i))$

The diffusion is the key factor in providing exchange of gases, substrates and waste products between the capillaries and the tissue cells.

CAUSES OF EDEMA DEVELOPMENT:

Capillary Pressure - P_c ([†]hydrostatic pressure, heart failure)

Plasma Proteins (nephrotic syndrome)

Capillary Permeability - K_f (infections)

Lymph drainage- π_i (lymphatic blockage)