HYPOXIA

Periodic breathing

 It is not regular, rhythmic, but respiration occurs in periods ("a moment to breathe, take a moment to not breathe,")

CHEYNE-STOKES

- BIOT'S
- "gasping"
- KUSSMAUL

Hypoxia, hypoxemia

- Hypoxia is a general name for a lack of oxygen in the body or individual tissues.
- Hypoxemia is lack of oxygen in arterial blood.
- Complete lack of oxygen is known as anoxia.

The most common types of hypoxia:

- 1. Hypoxic physiological: stay at higher altitudes, pathological: hypoventilation during lung or neuromuscular diseases
- 2. Transport (anemic) reduced transport capacity of blood for oxygen (anemia, blood loss, CO poisoning)
- 3. Ischemic (stagnation) restricted blood flow to tissue (heart failure, shock states, obstruction of an artery)
- 4. Histotoxic cells are unable to utilize oxygen (cyanide poisoning damage to the respiratory chain)

Hypercapnia

- Hypercapnia increase of concentration of carbon dioxide in the blood or in tissues that is caused by retention of CO₂ in the body
- possible causes: total alveolar hypoventilation (decreased respiration or extension of dead space)
- mild hypercapnia (5 -7 kPa) causes stimulation of the respiratory center (therapeutic use: pneumoxid = mixture of oxygen + 2-5% CO₂)
- hypercapnia around 10 kPa CO₂ narcosis respiratory depression (preceded by headache, confusion, disorientation, a feeling of breathlessness)
- hypercapnia over 12 kPa significant respiratory depression coma and death.

HYPOXIA is oxygen deficiency at the cells or the tissue or the organs or the organism level

OXYGEN FALL

	mmHg
dry atmospheric air	159
humid atmospheric air	149
ideal alveolar gass	105
end-expirated air	105
Arterial blood	77
Cytoplasma – mitochondria	3-10
Mixed venous blood	40
Venous blood	20

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

Hypoxia has been divided into following types:

- 1. Decrease oxidation of blood in the lung
- 2. Pulmonary disease
- 3. Venous-arterial shorts in circulation
- 4. Oxygen transport disorder (blood tissue)
- 5. Decrease utilization of oxygen by the tissue

1. Decrease oxidation of blood in the lung

- hypoxic hypoxia:
 - lower oxygen in atmospherical air
 - hypoventilation (neuromuscular diseases)

2. Pulmonary disease

-hypoventilation : increase airway resistance (asthma bronchiale) or pulmonary compliance

3. Venous – arterial shunts

from fetal circulation: ductus arteriosus Botali foramen ovale

4. Oxygen transport disorder (anemic hypoxia, stagnant hypoxia, ischemic hypoxia)

-Anemia

-Special type of hemoglobin (hemoglobin S-sickle cell anemia)

-Decrease of temperature

- -Cardiovascular diseases
- -Local disorder in circulation

5. Decrease utilization of oxygen by the tissue (histotoxic hypoxia)

-enzyme blocade of respiratory circle (poisoning)

 - e.g. Cyanid poisoning – cyanid inhibits cytochromoxidase; treatment: methylen blue or nitrites (methemoglobin + cyanid=cyanmetHg=nontoxic compound

-lower capacity of cells for utilization of oxygen (deficit of vitamins)

Fig. 3 Important physiological and pathophysiological effects during acute exposure to hypoxia and their potential associations with clinical conditions (modified after Rimoldi et al. 2010 [32]). AMS acute mountain sickness, HACE high-altitude cerebral edema, HAPE high-altitude pulmonary edema

Experiment

Hypoxic hypoxia – use the Krogh respirometer

Filling: ambient air with CO₂ absorber (calcium hydroxide)

Bed with fur and pillow I have no bow and arrow

Hypoxia setup

100					
					Ovimator
70					(%)
150					
					Pulse rate
50					(BMP)
100					
					Pulse
50					(mv)
10					
					Krogh
0					(Ľ)
20					
					O2 expir
5					(%)
8					
					CO2 expir
0					(%)
25					
					O2 inspir
0					(%)
0.5					
					CO2 inspir
0					(70)
50					
					(L/min)
0					(2/1111)
C) 1 2	3	4	5	6 Time (min)

Výsledky:

Hypoxie								
Osoba A	1.	2.	3.	4.	5.	6.	7.	8.
SpO ₂ [%]								
^V [l/min]								
Osoba B	1.	2.	3.	4.	5.	6.	7.	8.
SpO ₂ [%]								
V [l/min]								

√ [1/min]

Hypoxic hypoxia

- during a trip to high mountains

e.g. with cable car to Mont Blanck

Effect of high altitude on arterial oxygen saturation (numbers in parenthese are acclimatized value)

Altitude	barometric pressure	pO ₂ in air	pCO ₂ in alveoli	pO ₂ in alveoli	arterial oxygen saturation
(<i>m</i>)	(mmHg)	(mmHg)	(mmHg)	(mmHg)	(%)
0	760	159	40 (40)	104 (104)	97 (97)
3 048	523	110	36 (23)	67 (77)	90 (92)
6 096	349	73	24 (10)	40 (53)	73 (85)
9 134	249	47	24 (7)	18 (30)	24 (38)
12 192	141	29			
15 240	87	18			

Breathing pure oxygen

altitude	barometric pressure	pCO2 in alveoli	pO2 in alveoli	arterial oxygen saturation
(<i>m</i>)	(mmHg)	(mmHg)	(mmHg)	(%)
0	760	40	673	100
3 048	523	40	436	100
6 096	349	40	262	100
9 134	349	40	139	99
12 192	141	36	58	84
15 240	87	24	16	15

Work capacity at high altitude

work capacity (compare with normal condition)

(%)

Unacclimatized	50
Acclimatized for 2 months	68
Native living at 4 023 m	
but working at 5 182 m above sea level	87

High altitude hypoxia – mountain sickness - mild step

CNS disorientation

GIT

Sensitivity

Respiration

BP

HR

muscle

nausea

headache

increase

increase

increase, arrhythmias

loss of co-ordination

High altitude hypoxia – middle step

CNS	dimness of vision, vertigo, anxiosity
GIT	nausea
Sensitivity	chest pain
Respiration	apnoe
BP	increase
HR	decrease, irregulary
muscle	spasmus

High altitude hypoxia – severe step

CNS	coma
GIT	nausea, vomiting
Sensitivity	chest pain
Respiration	Cheyn-Stokesovo dýchání
BP	drop
HR	decrease
Muscle	muscle weakness

Travelling by aircraft

High risk for patients with:

- Concentration of hemoglobin above 60 %
- Atherosclerosis severe step
- Cardial insuficiency
- Respiratory insuficiency
- Hypertension untreated (BP ower 200/100)

(On board aicraft is pressure as on 2000 m above see level) Influence on SBP and DBP

- lower pO₂ stimulated sympaticus
- increase periphery resistance
- decrease stroke volume
- decrease pulse pressure
- decrease perfusion in tissues
- redistribution of blood in circulation
- increase of position of diaphragma (decrease hemodynamics and respiration)

The traveling by craft is risk for patients with

- cardio vascular diseases
- tromb embolic diseases

Toxicity of oxygen

The toxicity seems to be due to the production of the superoxid anion and H_2O_2

Causes: - inability to bind CO₂ in venous blood
 - development of CO₂ is more difficult due to toxic pulmonary oedema

Critical values: > 40 kPa (300 mmHg) ...dependent on time

Toxicity of oxygen

Exposure – 8 hours:- Respiratory passages became irritated

- Substernal distress
- Nasal congestion
- Sore throat
- Cough

- 24-48 hours:

- damage of lungs – decrease production of surfactant

TOXICITY of OXYGEN

Recommendation:

100 % - give discontinuosly