Cardiac action potential and underlying ionic currents: methods, physiology and selected pathologies

Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

Assoc. Prof. MUDr. Milena Šimurdová, CSc. Assoc. Prof. RNDr., Ing. Jiří Šimurda, CSc.

Department of Physiology Faculty of Medicine Masaryk University

Selected Lessons from Physiology

Ionic Base of Action Potential

Ionic Channels

Despopoulos, Color Atlas of Physiology © 2003

Impact of Knowledge on Electrical Properties of Cardiac Cells for Clinical Medicine

- Inherited Arrhythmogenic Syndromes
- Acquired Arrhythmogenic Syndromes
 - on a base of other primary cardiac diseases
 - side effects of drugs
 - effects of other substances including addictive drugs
- Sudden Cardiac Death
- Mechanisms of Action of Antiarrhythmic Drugs

1 1

- 1) Whole organism (ECG)
- 2) Isolated heart (Langendorff)
- 3) Multicellular cardiac samples
- 4) Isolated cardiomyocytes
- 5) Single membrane channels

Zipes D. a Jalife J. (2003) Cardiac Electrophysiology: From Cell To Bedside

Whole organism (ECG)
Isolated heart (Langendorff)

measured quantity: voltage (V)

potential difference φ between two points of a volume conductor (outside the cells) $V = \varphi_2 - \varphi_1$

Whole organism (ECG)
Isolated heart (Langendorff)

Recorded signals represent a sum of contributions of electrical activities of individual cells of the organ during propagation of excitation.

- 1) Whole organism (ECG)
- 2) Isolated heart (Langendorff)
- 3) Multicellular cardiac samples
- 4) Isolated cardiomyocytes
- 5) Single membrane channels

Zipes D. a Jalife J. (2003) Cardiac Electrophysiology: From Cell To Bedside

- 3) Multicellular cardiac samples
- 4) Isolated cardiomyocytes
- 5) Single membrane channels

potential difference between the extra- a intracellular medium (across the cellular membrane)

 φ_{e}

 $V = \varphi_i - \varphi_e$

measured quantities : 2) membrane current (I)

 φ_i

BASIC PRINCIPLES OF MEASUREMENTS ON VARIOUS LEVELS OF ORGANISM

LEVEL OF WHOLE ORGANISM

recorded quantity: VOLTAGE (as the potential difference)

method: surface and intracardial recording electrodes

His bundle electrogram

LEVEL OF ISOLATED ORGAN

recorded quantity: VOLTAGE (as the potential difference)

method: electrodes embedded in walls of the bath or the epicardial suction electrode

MULTICELLULAR CARDIAC SAMPLES

TWO ELECTROPHYSIOLOGICAL METHODS BASED ON ISOLATION OF CARDIOMYOCYTES

CELLULAR ELECTROPHYSIOLOGY

ENZYMATIC ISOLATION OF CARDIOMYOCYTES

SUFFICIENT FRACTION OF VIABLE, FUNTIONALLY UNDAMAGED CELLS RESPONDING TO ELECTRICAL STIMULATION BY :

- CONTRACTION
- CHARACTERISTIC ELECTRICAL ACTIVITY (ACTION POTENTIAL and MEMBRANE CURRENTS)

 \bigcirc

Technika patch clamp při měření z celé buňky (whole cell patch clamp technique)

current clamp mode of stimulation

voltage clamp mode of stimulation

(membrane located inside the tip of microelectrode)

Possibilities of Use of These Techniques

Analysis of electrical properties of cardiomyocytes under physiological and pathological conditions

Analysis of changes of electrical properties of cardiomyocytes under the effect of drugs

Methods of Analysis of Electrophysiological Properties of Cardiac Cells

Whole cell patch clamp technique

