Tissue concept and classification

Petr Vaňhara, PhD

Department of Histology and Embryology, Faculty of Medicine MU

pvanhara@med.muni.cz

- 6×10^{13} CELLS of 200 different types

 cells form functional, three-dimensional, organized aggregations of morphologically similar cells and their products and derivatives - TISSUES
 tissues constitute ORGANS and organ systems

Parenchyma: functional component of a tissue (liver, lung, pancreatic, kidney parenchyma)

Stroma: surrounding, supportive tissue

LIVER

Parenchyma:

- Hepatocytes
- Sinusoids and adjacent structures

Stroma:

- Connective tissue and adjacent structures
- Vessels
- Nerves
- Bile ducts

Based on morphology and function:

Epithelium

Muscle

Nerve

Connective

Continual, avascular layers of cells with different function, oriented to open space, with specific junctions and minimum of ECM and intercellular space.

Derivates of all three germ layers

Myofibrils → contraction Mesoderm – skeletal muscle, myocard, mesenchyme – smooth muscles

Rarely ectoderm (eg. m. sphincter a m. dilatator pupillae)

Neurons and neuroglia Reception and transmission of electric signals Ectoderm, rarely mesoderm (microglia)

Dominant extracellular matrix Connective tissue, cartilage, bone... Mesenchyme

CONNECTIVE TISSUE

Not just a tissue glue...

Mechanical and biological properties

 \rightarrow surrounds other tissues, allows compartmentalization, provides support, defines physicochemical environment, brings immunological support, provides storage of energy, ...

GENERAL COMPOSITION OF CONNECTIVE TISSUE

Cells and extracellular matrix (ECM)

Cells

- **Connective tissue** permanent and transient cell populations (e.g. fibroblasts/myofibroblasts, immune cells, adipocytes, adult stem cells)
- **Cartilage** chondroblasts/chondrocytes
- Bone osteoblasts/osteocytes/osteoclasts
- Matrix fibrous and amorphous
- Fibrous component
- collagen
- reticular
- elastic
- **Amorphous component** (amorphous ground substance) Complex matrix consisting of
- glycosaminoglycans
- glycoproteins
- proteoglycans

composition dependent on tissue type (connective \times ligament \times cartilage \times bone)

Embryonic CT

- Mesenchyme
- Jelly-like CT (Wharton jelly, dental pulp, stroma of iris)

EMBRYONIC ORIGIN OF CONNECTIVE TISSUE

- Mesenchyme = loose tissue between germ layers
- Complex network of star- or spindle-shaped cells
- Jelly-like amorphous ground substance

DAY 12 of embryonic development

DERIVATIVES OF CONNECTIVE TISSUE

LOOSE COLLAGEN CONNECTIVE TISSUE

Cells

- Fibroblasts/fibrocytes/myofibroblasts
- Heparinocytes
- Macrophages of CT = histiocytes
- Plasma cells
- Lymphocytes
- Adipocytes
- Adult stem cells

Extracellular matrix

- Fibrous compound
- Amorphous ground substance

CELLS OF LOOSE COLLAGEN CONNECTIVE TISSUE

Mesenchymal (adult) stem cells

Collagen fibers

- family of fibrous proteins encoded by >35 genes (2013)
- polymer subunit = tropocollagen; triple helix
- different structural and mechanical properties (strength, elasticity, pliability...)
- most abundant protein in human body (30% dry weight)

COLLAGEN

further study: https://www.ncbi.nlm.nih.gov/books/NBK507709/

COLLAGEN

Туре	Localization	Structure	Main function
I	Bone, tendons, meniscus, dentin, dermis, capsules of organs, loose CT 90% of type I	Fibrils (75nm) – fibers (1-20µm)	Resilience in pull
11	Hyaline and elastic cartilage	Fibrils (20nm)	Resilience in pressure
	Skin, veins, smooth muscles, uterus, liver, spleen, kidney, lung	Like I, high content of proteoglycans and glycoprotiens, reticular network	Shape formation
IV	Basal lamina of epithelium and endtohelium, basal membranes	No fibrils or fibers	Mechanical support
V	Lamina of muscle cells and adipocytes, fetal membranes	Like IV	
VI	Interstitial tissue, chondrocytes – adhesion		Connecting dermis and epidermis
VII	Basal membrane of epithelium		
VIII	Some endothelia (Cornea)		
IX, X	Growth plate, hypertrophic and mineralized cartilage		Growth of bones, mineralization

COLLAGEN IN LIGHT MICROSCOPE

- less abundant than collagen
- polymer tropoelastin
- minimal tensile resistance, loss of elasticity if overstretched
- reduction of hysteresis = allow return back to original state after mechanic change

RETICULAR FIBERS

- collagen 3D meshwork
- bone marrow, spleen, lymphatic nodules
- microenvironment for e.g. hematopoietic stem cells and progenitors

RETICULAR CONNECTIVE TISSUE

EXTRACELLULAR MATRIX – GROUND SUBSTANCE

Amorphous extracellular matrix

Colorless, transparent, homogenous substance consisting of glycosaminglycans,

proteoglycans and structural glycoproteins

linear polysaccharides composed of two disaccharide subunits – uronic acid and hexosamine

polysaccharides rich in hexosamines = acid mukopolysaccharides

glucuronic or iduronic acid

glucosamin or galactosamin

GLYCOSAMINOGLYCANS

They bind to protein structures (except for hyaluronic acid)

Glycosaminoglycan

Hyaluronic acid

Chondroitinsulphate Dermatansulphate Heparansulphate Keratansulphate Umbilical cord, synovial fluid, fluid of corpus vitreum, cartilage

Cartilage, bone, cornea, skin, notochord, aorta

Skin, ligaments, adventitia of aorta

Localization

Aorta, lungs, liver, basal membranes

Iris, cartilage, nucleus pulposus, anulus fibrosus

PROTEOGLYCANS

protein + dominant <u>linear</u> saccharide component

- proteoglycan aggregates
- water-binding, volume dependent of hydratation
- aggrecan (cartilage)
- syndecan
- fibroglycan

STRUCTURAL GLYCOPROTEINS

- dominant protein + <u>branched saccharide component</u>
- interaction between cells and ECM

- fibronectin connects collagen fibers and glykosaminoglycans, cell adhesion and migration
- laminin basal lamina epithelial integrity
- chondronectin cartilage adhesion of chondrocytes to collagen

COMPOSITION OF ECM

CLASSIFICATION OF SPECIALIZED CONNECTIVE TISSUE

ADIPOSE TISSUE

- Adipocytes, fibroblasts, reticular, collagen and elastic fibers, capillaries
- White and brown adipose tissue

WHITE ADIPOSE TISSUE

- adipocytes are actively formed until 2nd year of life
- no innervations, but rich vascularisation
- adipocytes with only one lipid droplet
- leptin (adipokinins)

BROWN ADIPOSE TISSUE

- fetus and children up to 1st year of life
- fast source of energy
- typical localization between shoulder
 blades, axilla, mediastinum, around
 kidneys, pancreas, small intestine
- small cells with numerous fat droplets

FURTHER STUDY

6 Blood morphology and hematopolesis

http://www.med.muni.cz/histology

Thank you for attention

Petr Vaňhara, PhD. pvanhara@med.muni.cz