Pathology of the lymphatic and hematologic systems

V. Žampachová I. ÚP

Lymph nodes

- ➤Normal LN soft, nonpalpable
- Lymphadenopathy enlarged palpable LN
- *Tender LN usually in acute reaction (hyperemia, edema of LN), commonly neck
- ➤Nontender LN palpable firmer lump mostly chronic reaction (neck LN, inguinal LN, ...), chronic inflammation (TB, ...), cancer
- Past medical history of the client important

Lymph nodes

changes in size (>10 mm), shape (fused together), consistency important, must be reported

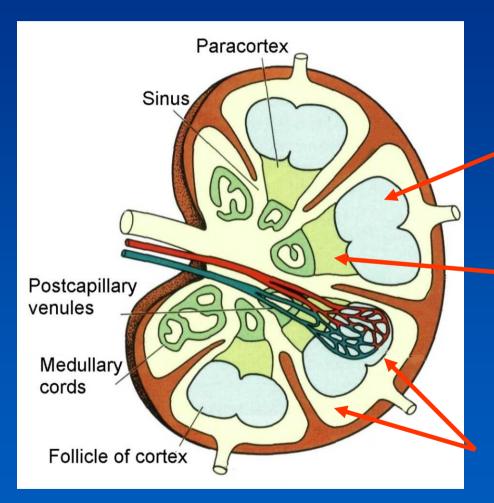
LN in front or behind of ears, supraclavicular, pectoral – usually not affected by local inflammation – changes more suspicious

Disorders of the lymphatic system

- Lymphadenitis inflammation of LN
- Lymphadenopathy reactive enlargement of LN (immune reaction)
- Lymphangitis inflammation of lymphatic vessel
- Lymphedema increased amount of lymph fluid in soft tissue

Lymphadenopathy

≭LN – defense barrier

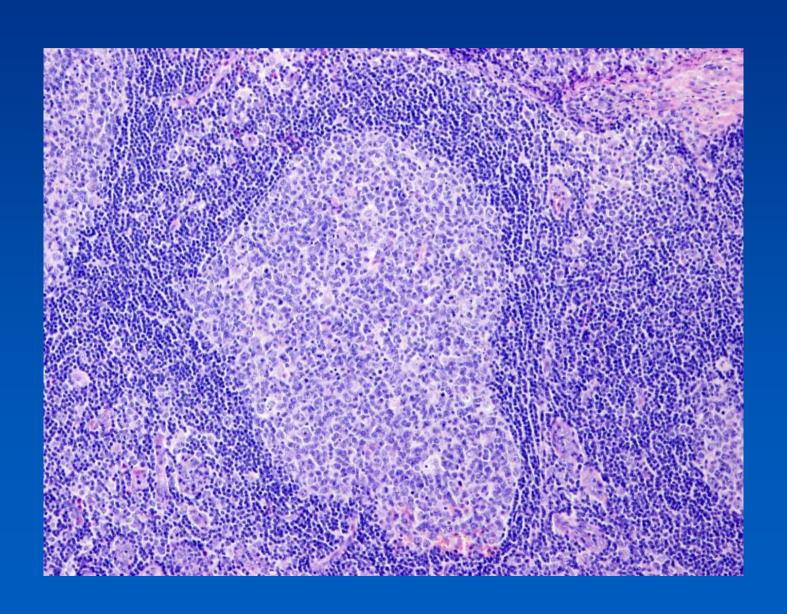

- Regional LN in focal infection /reaction, focal malignant tumor (reactive cervical lymphadenopathy in infection of oral cavity, pharynx, ears, head, skin or soft tissue
- *Generalized lymphadenopathy ≥ 2 groups of LN; in systemic infection, immunologic reaction, spread of a malignant tumor

Non-specific reactive lymphadenopathy

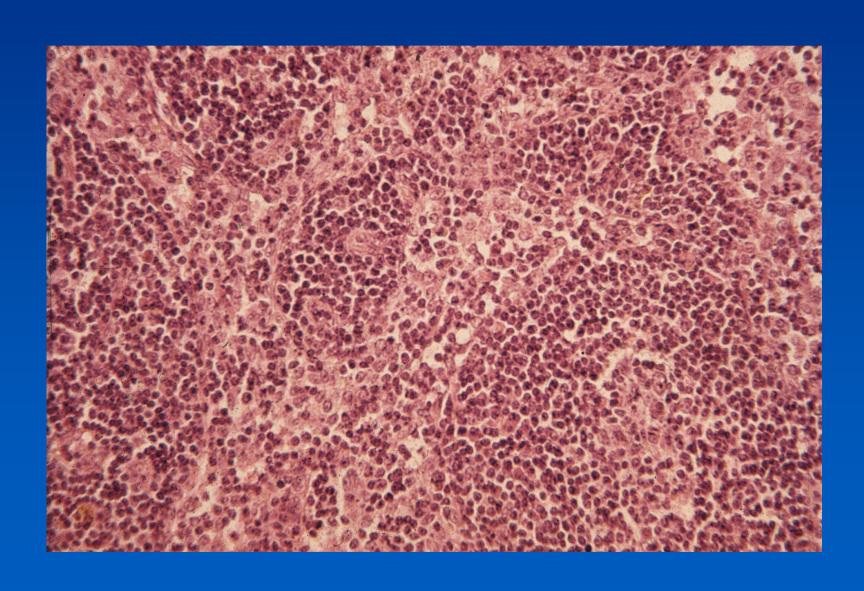
regional or systemic response of lymphatic tissue on antigenic stimulation (inflammation, tumor, foreign material)

- Gross: acute lymphadenopathy (enlarged LN), hyperaemia, soft consistency, tender
- Micro: according to the cause lymph. follicles activation and hyperplasia, sinus hyperplasia ("histiocytosis"), T-zone activation

Reactive lymphadenopathy


Reactive hyperplasia:

Follicular (B)
(bacteria, sterile inflammation)


Paracortical (T)
(viruses, chronic
inflammations)

Sinus histiocytosis

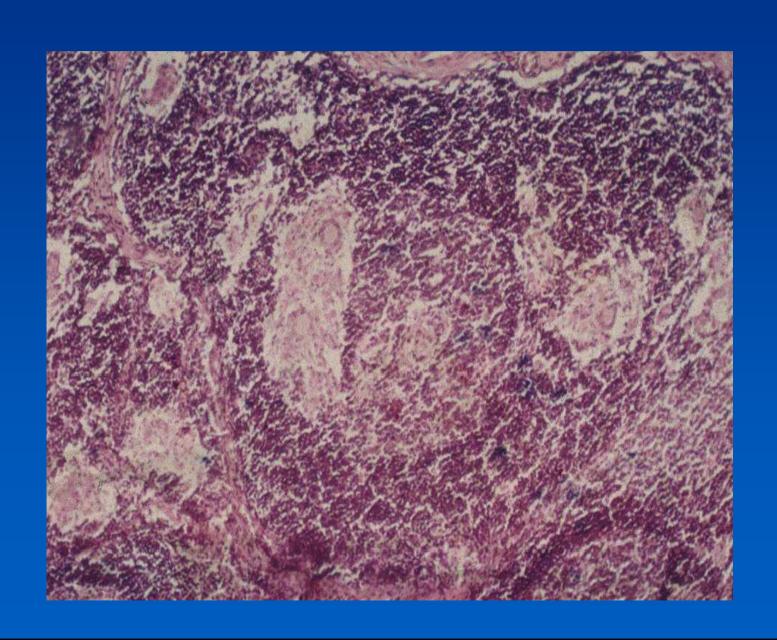
Follicular hyperplasia - reactive

Sinus histiocytosis

Lymphadenitis

Acute – LN region warm, reddened, LN enlarged, tender

- *Usually in more aggressive local infection, which affects even the LN (cervical in acute tonsillitis, inguinal in infection of extremities). Abscess possible.
- Short duration (approx. 2 weeks), if the cause progresses → possible transformation into chronic lymphadenitis

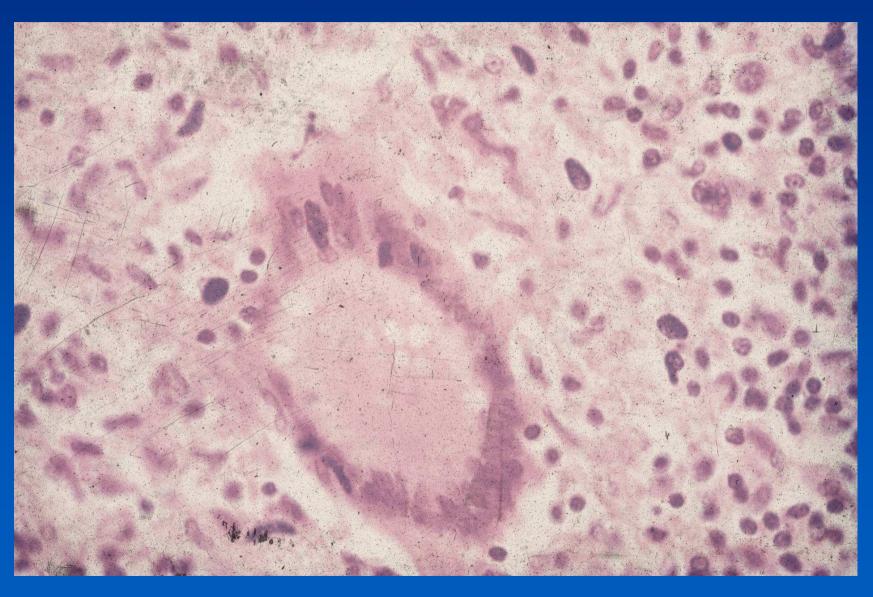

Lymphadenitis

Non-specific: without specific microscopic patterns

- Specific: micro picture +/- specific for one cause
 - granulomatous inflammation (TB, sarcoidosis, mycotic infection,...)

- Chronic LN enlarged, nontender, firmer
- Long duration, even persistent

TBC lymphadenitis



Tuberculosis

*Tuberculous granuloma - basic morphology: central caseous necrosis (soft), transformed epithelioid macrophages + multinucleated Langhans' giant cells (fusion of macrophages), rim of T-cells

*Mycobacterium tuberculosis
Ziehl-Neelsen staining, acid-resistant bacteria

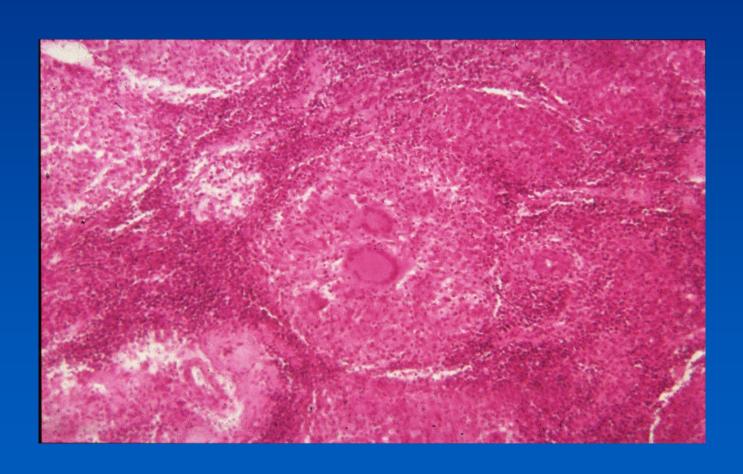
TBC lymphadenitis

Sarcoidosis

Chronic granulomatous inflammatory disease, direct etiology unknown

Mostly in mediastinal LN, lung, skin, eye; any localisation possible

Regular small "tuberculoid" granulomas without caseous necrosis


Sarcoidosis

May be asymptomatic, chest X-ray: bilateral lymphadenopathy (diff. dg. x lymphoma, cancer metastasis)

Slow progression or remission + healing

★10% mortality (lung fibrosis, cor pulmonale), 20% lung or ocular dysfunction

Sarcoidosis

Lymphangitis

- Acute inflammation of subcutaneous lymphatic vessels
- Usually from local wound/infection
- Red streak under the skin ("blood poisoning")
- Involved regional LN
- Systemic manifestation possible (fever, chills, malaise), bacteremia
- Risk of lymphedema

Lymphedema

Swelling of the soft tissues due to accumulation of protein-rich fluid in the extracellular space

Cause: ↓ lymphatic transport capacity and/or increased amount of lymph

Extremities common; head, neck, abdomen, genitalia posssible

Lymphedema

- *Primary (idiopathic): result of lymphatic maldevelopment, rare.
 - → May be present at birth (connatal)
 - ⇒ Can develop later in life without known cause

- Secondary (acquired) more common.
 - Result of surgery, radiation, injury, trauma, scarring, or infection of the lymphatic system

Secondary lymphedema

- Surgery: breast cancer, melanoma, prostate/bladder cancer, lymphoma, ovarian cancer, hip replacements
- Radiation therapy
- Drugs (steroid, etc.)
- ★Trauma scarring, crush injury
- Infection: filariasis, etc.
- Chronic venous insufficiency
- Obesity
- *Self-induced

Lymphedema staging

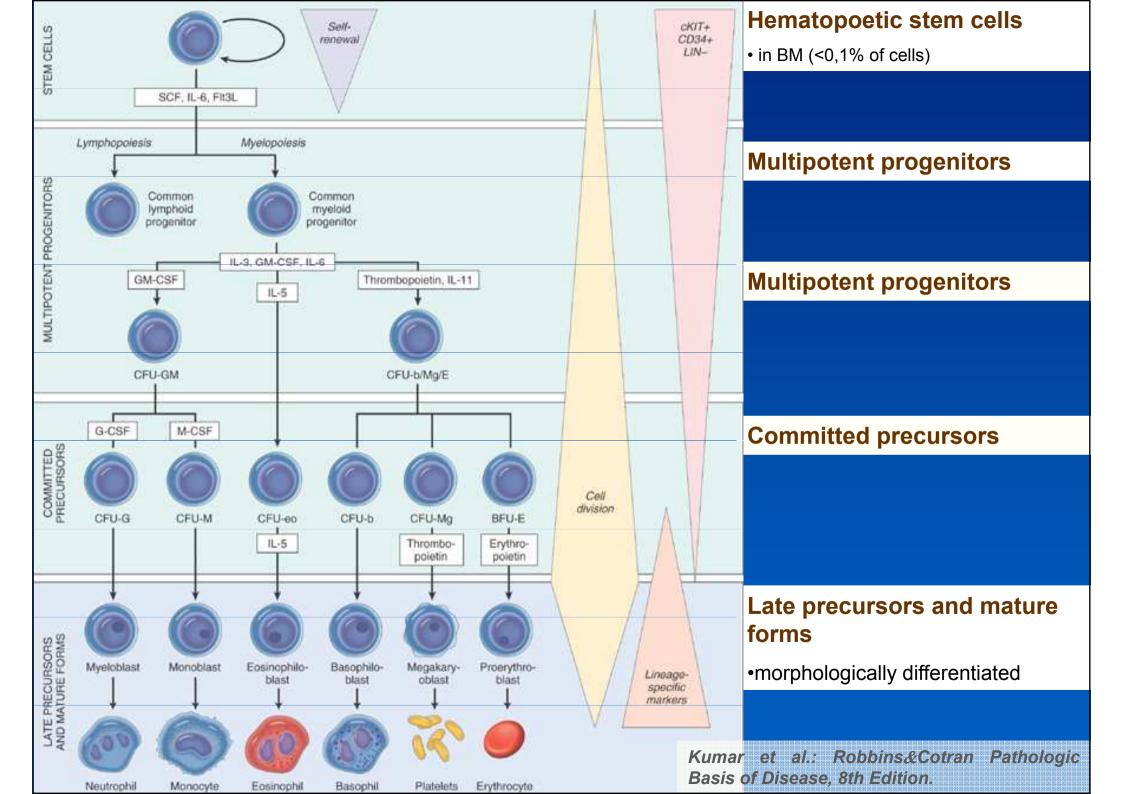
- Stage 0 latent: reduced transport capacity, no edema present
- Stage I: pitting edema present, reversible (elevation)
- ★Stage II: nonpitting edema + fibrotic tissue, irreversible
- Stage III: lymphostatic elephantiasis, severe fibrotic edema, skin changes folds, hyperkeratosis

Lymphedema

Lymphedema

- *Lymphedema is a disease.
- Untreated I. is progressive
- Early diagnosis necessary
- *If fully evolved, no definitive cure possible.
- Management strategies exist: treat the causing disorder;
- ▶ Proteolysis, surgery, ...
- Lymphatic drainage manual, compression bandage, pump

Malignant complications


- *After long-standing lymphedema possible evolution of malignant vessel tumor angiosarcoma
- *Signs: reddish-blue and dark nodules, rapid growth, bleeding, ulceration
- **≭**Bad prognosis

Tissue changes in lymphedema

- Hypoxemia, loss of functional cells
- Proliferation of connective tissue cells (fibroblasts)
- Production of collagen fibers
- Fibrotic changes, sclerosis and induration
- Fatty tissue increase

Hematopoiesis

- from hematopoietic stem cell
- HSCs (Hematopoietic Stem Cells): pluripotent, ability of self-renewal (replication)
 - ⇒ due to asymetric cell division variable progenitor cells arise :
 - fenotypically identical cells HSCs
 - fenotypically different cells multipotent cells (progenitors of myeloid cell line or progenitors of lymhoid cell line)
 - Regulation of hematopoiesis through specific growth factors

Possible signs of hematologic disorders

- *****Congestion
- ***Infarction**
- *Thrombosis, embolism
- *Bleeding, bruising
- *****Lymphadenopathy
- *****Splenomegaly
- *Fatigue, dyspnoea
- *****Edema:
 - ⇒lymphedema
 - ⇒cerebral edema
 - **⇒inflammatory edema**
 - ⇒pulmonary edema

Emergency disorder

- Shock: acute circulatory failure causing hypoperfusion of vital organs
- Cardiogenic or hypovolemic
 - **⇒** *Hypotension*
 - ⇒ Rapid, weak pulse
 - ⇒ Pallor
 - ⇒ Moist, cooler skin
 - ⇒ Bleeding foci possible, if shock due to bacterial toxemia (pinpoint bleeding into the skin)

Shock

- Ischemic injury of multiple organs
- Serious clinical problem, commonly fatal
- Consequences:
 - ⇒Renal failure
 - **⇒** Acute pancreatitis
 - ⇒Irreversible neuronal injury, risk of cerebral infarction
 - Risk of myocardial infarction
 - Lung insufficiency acute respiratory distress syndrome

Multiorgan failure (MOF) possible

Hematologic disorders

- Alteration of the oxygen-carrying capacity of the blood
- Changes of the structure, consistency of the blood
- *Alteration of the blood flow
- Increased workload of the heart and/or lungs
- Alteration of tissue perfusion
- Increased risk of thrombosis
- Increased risk of bleeding

Modifications of therapy according to the blood + other tests necessary

Disorders of erythrocytes (RBC)

Anaemia

Reduction of the oxygen-carrying capacity of the blood due to decreased quantity and/or quality of RBC

- *Posthemorrhagic: trauma, cancer (GIT, urinary, genital, lung), ulcers, varices, coagulopathy...
- *Hemolytic (destruction of RBC): mechanical (artificial heart valve), autoimmune, inborn defects (of hemoglobin etc.), infection (malaria), hypersplenism
- *Decreased production of RBC: nutritional deficiency; bone marrow failure due to neoplasia, drugs (antineoplastic), endocrine disorders; chronic diseases anaemia of inflammation

Implications for the therapist

- Diminished exercise tolerance + easy fatigability
- *Combination with other problems common (cardiovascular, renal, ...)
- *Risk of combination with bleeding disorders !manual therapy
- Impaired healing of wounds
- Monitoring of vital signs and mental status necessary
- *In young athletic clients iron-deficiency anemia possible (females, dietary choices, drugs, etc.)

Disorders of leukocytes

Leukocytosis

- ↑ number of WBC, usually of specific group
- Acute haemorrhage (after 1-2 hrs)
- Infection (mostly bacterial for neutrophils, viral for lymphocytes)
- Inflammatory reaction in tissue necrosis, trauma
- *Immune-mediated disorders (incl. allergic reaction eosinophils)
- Malignancies, incl. hematologic
- *Reaction to stress, incl. exercise

Disorders of leukocytes

Leukopenia

- **x**↓number of WBC (≤5000/ml)
- **≭**Infection (HIV, other viruses destruction of WBC)
- *****Alcohol
- ⋆Nutritional status
- *Drugs (antineoplastic, immunosuppressive, NSAID, antibiotic)
- Malignancies incl. hematologic, carcinomas
- Radiation therapy

Implications for the therapist

Immune deficiency – risk of infection

Disorders of hemostasis

- Von Willebrand disease problems in formation of the primary platelet plug
- *Hemophilia lack of clotting factor for secondary hemostasis; arthropathy, spontaneous bleeding, major bleeding after minor trauma
- *Acquired coagulopathy common due to therapy (aspirin, antithrombotic drugs)
- *Thrombocytopenia / thrombocytopathy mucosal bleeding common, easy bruising, heavy menstruation bleeding, GIT bleeding

Implications for the therapist

Individual exercise planning according to the client stage

TUMORS of HAEMATOPOETIC and LYMPHATIC TISSUES

- **≭**Broad spectrum of entities
- **WHO** classification
 - clinical, morphologic, imunophenotypic and genetic features defining distinct diseases.

Etiopathogenesis of hematooncological diseases

- ???
- hereditary syndromes
 - Inherited genetic instability (Bloom's sy, ataxia teleangiectasia...), Down's sy, NF type I...
- oncogenic viruses
 - *HTLV-1*, *EBV*, *HSV-8*
- chronic stimulation of immune system
 - Helicobacter pylori, gluten-sensitive enteropathy (celiac sprue)
- iatrogenicity
 - radiotherapy, chemotherapy
- smoking

- Leukemia (hemoblastosis)
 - Diffuse replacement of normal BM by leukemic cells with their subsequent variable accumulation in peripheral blood (=leukemization)
 - Infiltration of peripheral organs (liver, spleen, lymph nodes, meninges, gonads,....), tissue infiltration → organ enlargement without solid foci.

Lymphoma (hemoblastoma)

- Neoplastic/lymphoma cells form tumor/neoplastic mass (nodal and/or extranodal)
- solid tumorous foci, dissemination in form of metastasis. Usually lymphoid origin, rare histiocytic
- ! Lymphomas may also present by leukemic infiltrates and leukemias also form solid neoplastic massess

Hematooncological diseases classification

Myeloid neoplasms

- Monoclonal proliferations from stem cells that normally give rise to the formed blood elements
- Replacement of normal bone marrow
- 3 categories
 - → acute myelogenous leukemias
 - → myeloproliferative disorders
 - → myelodysplastic syndromes

Lymphoid neoplasms

- → non-Hodgkin lymphomas (incl. lymphocytic leukemias and plasma cell dyskrasias)
- → Hodgkin lymphomas

Histiocytic neoplasms

- Myeloid neoplasms
- Cells of the myeloid line (erythrocytes, granulocytes, monocytes, platelets)
- Primary involvement of bone marrow (secondary spleen, liver and lymph nodes)

- ***General clinical signs in acute leukaemia** rapid onset; marrow failure →
- Anaemia (fatigue, dyspnea, palor)
- Neutropenia (bacterial, fungal infection fever, repeated oral/respiratory inflammation),
- Thrombocytopenia (bleeding, epistaxis, haematomas)
- Weight loss (increased cell turn-over)
- Hepatomegaly, splenomegaly (compression of adjacent organs)

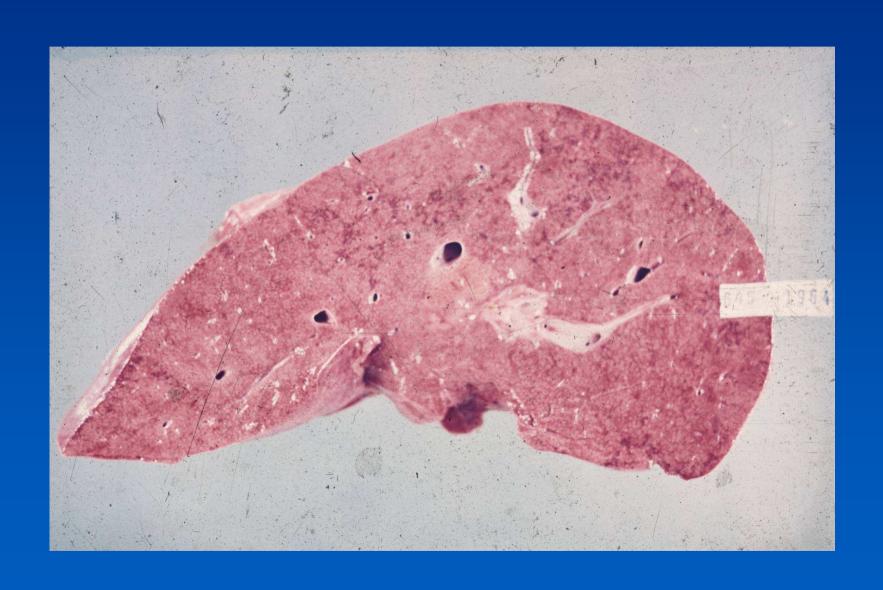
*Acute myeloid (myeloblastic) leukaemia

- *primarily in older adults (median age 50), incidence rises with age
- *leukemic infiltrates in bone marrow, liver, spleen, lymph nodes
- possible solid tumor manifestation (myeloid sarcoma)
- generally poor prognosis

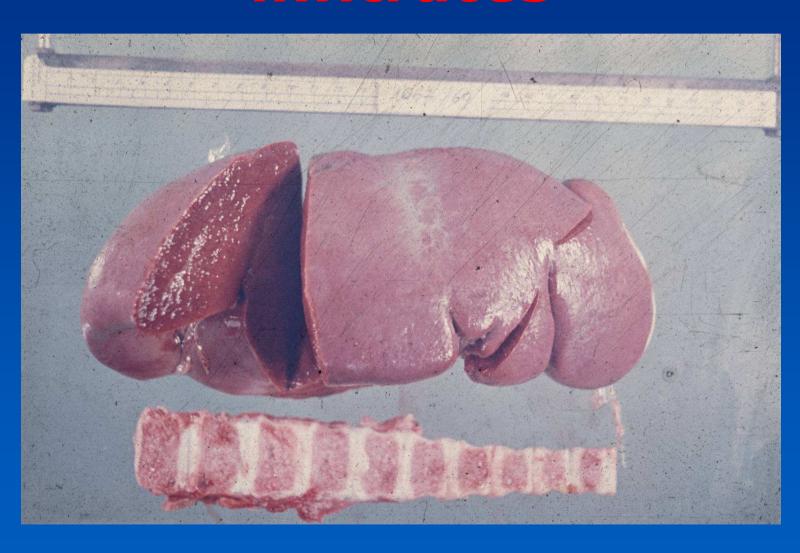
★Myelodysplastic syndromes: clonal stem cell disorders, ineffective haematopoesis→ cytopenias; dysplastic maturation. De novo or after radio/chemotherapy. Progressive marrow failure. May → AML.

Myelodysplastic/myeloproliferative diseases overlapping features, variably effective haematopoesis, dysplasia

Chronic myeloproliferative diseases


clonal stem cell disorders – hypercellular marrow with maturation, no dysplasia, effective haematopoesis → elevated blood levels of one or more cell lines, usually hepatosplenomegaly, lymphadenopathy

- chronic myeloid (myelogenous) leukaemia
- essential thrombocythaemia
- polycythaemia vera (rubra) (RBC)
- chronic idiopatic myelofibrosis


Chronic myelogenous leukemia

- *adults, peak incidence in 4th and 5th decade
- elevated leukocyte count
- **★15-20%** all leukaemias
- ★huge spleen (~5-7 kg), liver enlargement
- *clinical picture: anemia, hypermetabolism due to increased cell turnover: fatigability, weakness, weight loss, anorexia.....slow progression-accelerated phase blastic crisis (AML-like)
- poor prognosis;
- *therapy: transplantation of bone marrow, specific drug available

CML in the liver

CML - splenomegaly, spine infitrates

Implications for the therapist

Leukemia

Problems due to neoplasia + therapy

Immune deficiency – risk of infection!

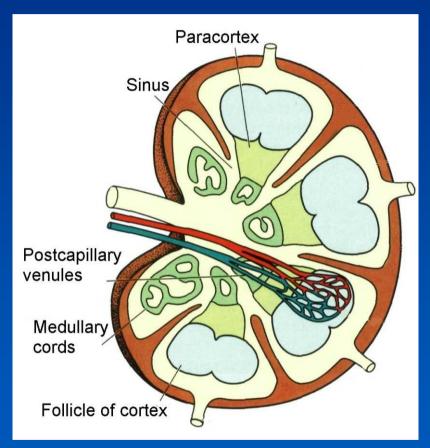
Thrombocytopenia – bleeding

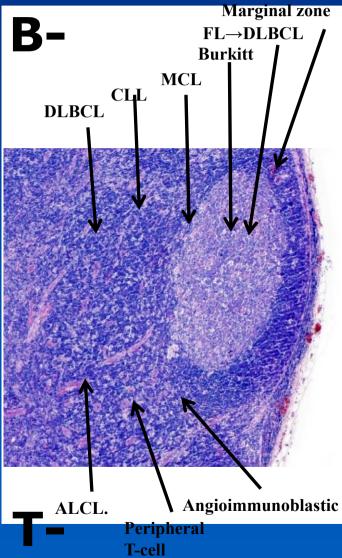
Anaemia

Other possible side effects of therapy (mood changes; muscle weakness in corticosteroid therapy)

Joint problems (arthralgia, arthritis)

Exercise necessary for improvement in health-related quality of life, mental health, reduced symptoms


- *Histiocytic and dendritic cell neoplasms
- from mononuclear phagocytes common bone marrow precursor
- *follicular dendritic cells non-myeloid, from mesenchymal stem cell
- *true histiocytic neoplasm uncommon (Langerhans cell histiocytosis)


Non-Hodgkin lymphomas/ WHO classification

B-Cell Neoplasms	T-Cell Neoplasms
Precursor B-Cell Neoplasms - precursor B-cell leukemia/lymphoma (B-cell acute lymphoblastic leukemia)	Precursor T-Cell Neoplasms - precursor T-cell leukemia/lymphoma (T-cell acute lymphoblastic leukemia)
Peripheral B-Cell Neoplasms	Peripheral T-/NK-Cell Neoplasms

Nodal lymphomas

different cell type/stage of immunologic maturation → different lymphoma type

B-cell acute lymphoblastic leukemia/lymphoma (B-ALL)

- most frequent malignancy in children (peak at age 4)
- Infiltration of bone marrow, lymph nodes, liver, spleen...
- Highly aggressive, but chemosensitive
 - (⇒ children 2 to 10 years best prognosis)
 - chemo-, radiotherapy generally carcinogenic in itself
 - ! increased risk of secondary malignancy (other type of leukemia/lymphoma, lung cancer, etc.) after several years decades

Peripheral B-cell lymphomas (selected)

- Chronic lymphocytic leukemia / small cell lymphoma
- Follicular lymphoma
- **™**MALT lymphoma
- Plasma cell neoplasms
- **➣** Diffuse large B-cell lymphoma

Chronic lymphocytic leukemia (CLL)

- Mature B-cell neoplasm, same cellular morphology and genotype in small lymphocytic lymphoma (in CLL lymphocytosis in peripheral blood)
- ★Most common chronic leukaemia, common protracted course (~10 yrs), in >50 yrs old. Possible transformation to high grade ML
- Hypercellular bone marrow, generalised lymphadenopathy, hepatosplenomegaly

CLL- hepatic and nodal infiltrates

Follicular lymphoma

- ★Mature B-cell non-Hodgkin lymphoma;
- common type (40%)
- *Neoplasia of follicle centre B-cells In LN predominantly follicular pattern, sm. diffuse. May be in spleen, Waldeyer's ring,...

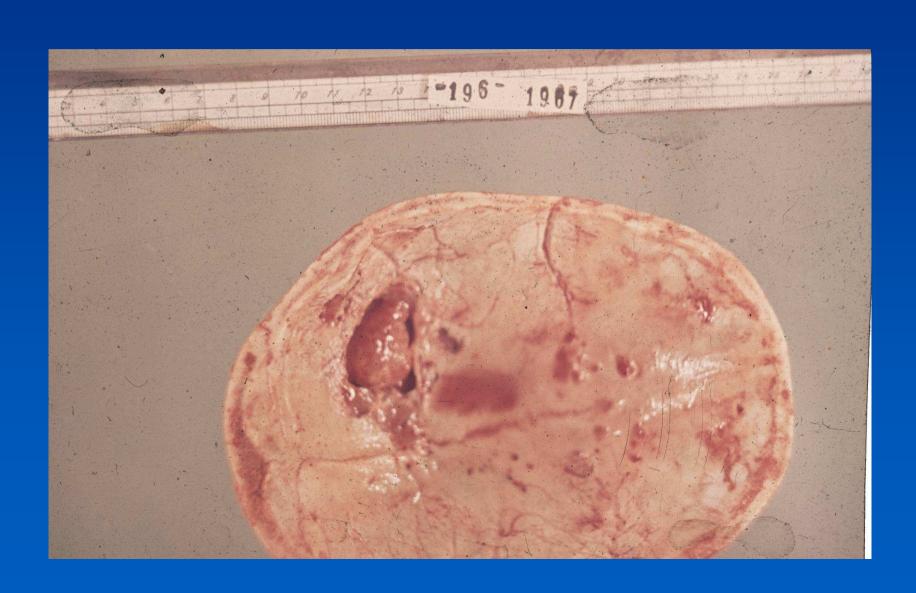
Follicular lymphoma

- Clinically: nontender generalised lymphadenopathy, commonly widespread disease at diagnosis (incl. liver, bone marrow), middle → late age adults.
- ★Low grade longer course (5-10 years), usually incurable
- ➤ High grade aggressive, potential for cure (remission), but possible transformation into diffuse large B-cell lymphoma

Spleen, follicular lymphoma

Extranodal marginal zone lymphoma (MALT lymphoma)

- derived from mucosa-associated lymphatic tissue (salivary glands, thyroid, stomach, intestine, ...)
- chronic stimulation of immune system
 - e.g.: chronic gastritis associated with Helicobacter pylori (HP) infection
 - some autoimmune inflammations (thyroiditis, salivary glands, ...)
- low grade/aggressive lymphoma

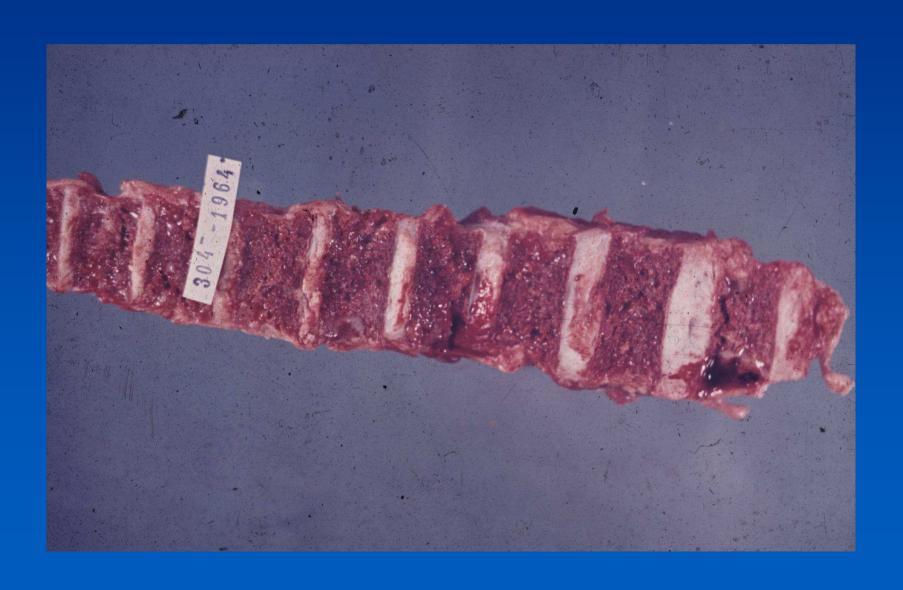

Diffuse large B-cell lymphoma (DLBCL)

- older adults, most frequent lymphoma
- highly aggressive
- de novo or high grade transformation of low grade lymphoma (CLL, FL, MALToma...)
- nodal or extranodal (tonsil, adenoid lymphatic tissue, GIT, skin, bones, thyroid, ...)

Plasma cell neoplasms

- Included in mature B cell neoplasms, clonal prolif. of immunoglobulin secreting end-stage B cell. Most common plasma cell (multiple) myeloma
- *Bone marrow-based, multifocal, in older adults, destructive skeletal (osteolytic) lesion, common in foci of active haematopoesis (vertebrae, ribs, skull, ...)
- ▶ Pathological fractures, hypercalcaemia, anaemia
- Renal complications

Multiple myeloma in skull



Multiple myeloma in skull – X-ray

Kumar et al: Robbins & Cotran Pathologic Basis of Disease, 8th Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

Multiple myeloma in spine

T-cell lymphomas (selected entities)

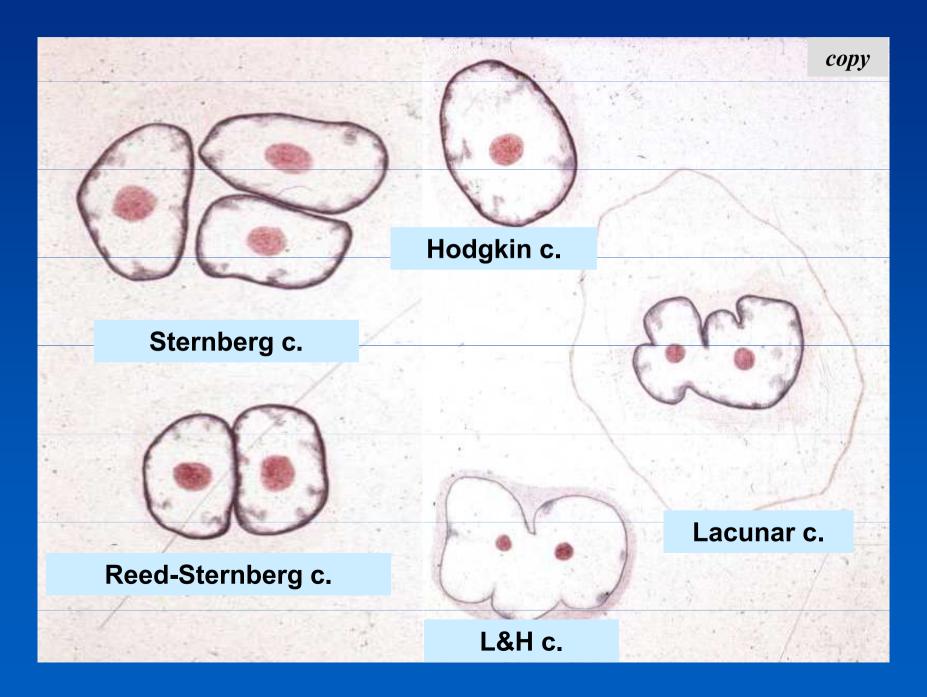
- Generally uncommon
- Possible origin in the skin
 - unusual chronic relapsing "dermatitis"
- Mycosis fungoides/Sézary syndrome
 - MF: Primary skin lymphoma
 - SS: leukemized, erythroderma
- Anaplastic large cell lymphoma

Hodgkin lymphoma

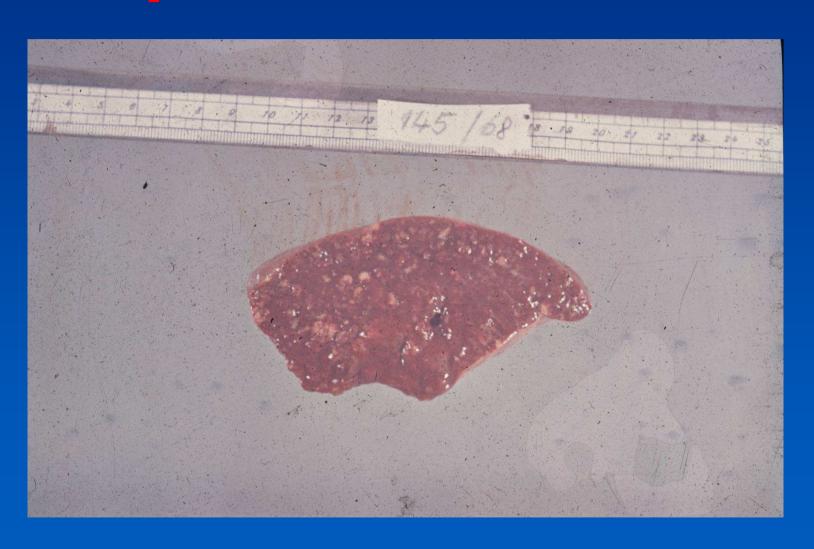
- One of most common malignancies in young adults
- Non-tender lymhadenopathy (origin in LN), commonly cervical or axillary; usually localised at presentation (1-2 LN groups); in 30% systemic signs (high fever, night sweats, weight loss)
- Continual spread from one group of LN to the next one, diaphragm important barrier for staging, late extralymphatic spread

Differences between HL and NHL

Hodgkin lymphoma	Non-Hodgkin Lymphoma
Usually localized to a single axial group of LN (cervical, mediastinal, para-aortic)	Involvement of multiple peripheral LN
Contiguous spreading	Non-contiguous spreading
Mesenteric LN and Waldeyer ring rarely involved	commonly involved
Extranodal rare	Extranodal common
Diagnostic (neoplastic) cells admixed with reactive non-malignant inflammatory cells	Neoplastic/lymphoma cells dominate
B-cell origin	B- or T-cell origin


Hodgkin lymphoma

- 2 distinctive disease entities:
- Nodular lymphocyte predominant HL: 80% males, 30-50 yrs, large neoplastic "popcorn, L&H"B cells among non-neoplastic ly
- Mostly localised at presentation, late relapse or transformation into DLBCL possible
- ★Stage I+II 10 year survival in 80%


Hodgkin lymphoma

- *classical Hodgkin lymphoma
 95% of HL, 1. peak 15-35 yrs, 2. elderly; risk factor EBV;
 75% in cervical LN
- .4. subtypes
- variable types/numbers of neoplastic Reed-Sternberg cells in the infiltrate
- *RT, CHT → excellent prognosis, but risk of secondary malignancies (myelodysplastic sy, acute myeloblastic leukemia, lung ca)

Diagnostic cells of HL

Hodgkin lymphoma – splenic infiltrates

Implications for the therapist

- Lymphadenopathy (diagnosis)
- ⋆Infection control
- Mobility + gait training
- Aerobic conditioning
- Respiratory rehabilitation
- Lymphedema management
- Special management in multiple myeloma: muscle wasting, risk of pathological fractures