

Scoliosis

<u>Prýmek M</u>., Repko M., Filipovič M., Leznar M.

Department of Orthopedic Surgery – Faculty of Medicine – Ass. Martin Prýmek

Scoliosis = 3 D deformity

Shoulder height disbalance

Gibbus – paravertebral prominence

Waist asymetry

Trunk decompensation - frontal plane , C7 plumb line

Bending forward! = Adams test

SAGITTAL aspect

HYPERkyphosis

TRANSVERSE aspect

tient ON

COBB's angle

Descriptive terminology

Therapeutic scheme

Natural evolition of untreated juvenile idiopathic scoliosis

Deformity worsening

ad progresion even in adult age!

Thoracic curves
 1 dg./year

• Thoracolumbar curves - 0,5 dg./year

• Lumbar curves - 0,24 dg./year

Sever complication of untreated scoliosis in childhood

Degenerative changes and cardiopulmonal insuficiency

2015

32 let 35 let

Risks of curve progression

- Progressive oppression of intraabdominal organs
 - Heart + Lungs
 - Indigestion
- Degeneration of spine structures
 - Intervertebral joints
 - Intervertebral disc->

production of osteophytes with possible ner

compression!

Goals of scoliosis surgery in childhood

- Stop deformity progression
- **2** Correction of deformity
- Improvement of cardiopulmonary functions
 - Prevention of degenerative spine changes

Scoliosis surgery in adult age

- Often associated with nerve impairment

Difficult tolerance of corrected torso and spine position

- Slow postoperative convalescence (pain)
 - long-term rehabilitation care is required

Surgical risks in general

rhythm disorders, etc.

Surgical risks specific for scoliosis surgery

 Increased postoperative pain due to stretching of shortened muscles - in each patient

- Paralysis due to surgery
 - For thoracic and lumbar curves it refers to the lower limbs
 - Very rare complication, but very serious as a result.

MEP – motor evoked potentials

- Monitoring of nervous system functionality during surgery
- It enables immediate reaction to the problem and thus minimizes the risk of permanent nervous disability

MEP – motor evoked potentials (SSEP)

SEP a MEP

Method of surgical scoliosis treatment.

- Transpedicular screws
- Bended rods
- Bone grafts (autograft
- = INTERVERTEBR₽

Základní pojmy popisné

Apical vertebra

End vertebra

Neutral vertebra

CSVL

Stabile vertebra

Scoliosis types due to ethiology

- Idiopathic......4/5 **80%**
 - infantile
 - juvenile

Scoliosis types due to ethiology

Deformity type

Idiopathic

- Congenital
- Neuromuscular

Age

Infantile

Juvenile

Adolescent

Adult

SCOLIOSIS = 3 dimensional deformity

Coronal plane

Sagittal plane

COBB's angle

Essentially distinguish between:

Structural curve curve benc

Non-structural

25

EVOLUTION in scoliotic classifications

LENKE's classification

Curve type

Lumbar spine modifier

Thoracic sagittal profile

LENKE's classification

Curve type

(Minor Curves)

Proximal Thoracic - Side Bending Cobb ≥ 25°

T2-T5 Kyphosis ≥ +20°

 Side Bending Cobb ≥ 25° Main Thoracic

T10-L2 Kyphosis ≥ +20°

Thoracolumbar/Lumbar - Side Bending Cobb $\geq 25^{\circ}$ - T10-L2 Kyphosis $\geq +20^{\circ}$

Minor = All other curves with structural criteria applied

Type 4 - MT or TL/L can be major curve

LOCATION OF APEX (SRS Definition)

APEX CURVE Thoracic T2-T11/12 Disc Thoracolumbar T12-L1 Thoracolumbar/Lumbar L1/2 Disc-L4

Lenke's classification curve types

LENKE's classification

Lumbar spine modifier

Lenke's classification lumbar parameter

LENKE's classification

Lenke's classification sagittal parameter

Lenke's classification **EXAMPLES**

> 40°

Lenke 1A-

type	Proximal thoracic	Main thoracic	Thoracolumbar/lumb ar	Description
4	Structural	Structural (Major)	Structural (Major)	TM (Triple Major)

type	Proximal thoracic	Main thoracic	Thoracolumbar/lumb ar	Description
4	Non-Structural	Non-Structural	Structural (Major)	TL/T (Thoracolumbar/Lu mbar)

type	Proximal thoracic	Main thoracic	Thoracolumbar/lumb ar	Description
4	Non-Structural	Structural	Structural (Major)	TL/T-MT (Thoracolumbar/Lu mbar-Main Thoracic)

Therapeutic chart

Non-operative treatment

physiotherapy

casting

bracing

CASTING

Indication: INFANTILE scoliosis

Applying under the general anesthesia

Changing each and every 2 month

BRACING

BRACING

Indication for bracing:

progressive scoliosis poor or no casting toleration unable to undergo surgery

3D scoliotic correction

Corrective methods

1-distraction

2-compression

3,4-translation

5-derotation

BRACING

Source: Rigo et al, Scoliosis 2010

BRACING

Problems:

- HYPOKYPHOSIS
- POOR DEROTATION

DISTRACTION

EVOLUTION in corrective maneuvers

DISTRACTION

Advantages:

- Simple implantation
- Possibility of spine growth
 - Miniinvasive approach

Disadvantages:

- Uniplanar correction (frontal)
 - High rate of complications

Problems:

- HYPOKYPHOSIS
- NO DEROTATION

TRANSLATION

TRANSLATION

Advantages:

Good frontal correction

Disadvantages:

Uniplanar correction (frontal)

Problems:

- HYPOKYPHOSIS
- NO DEROTATION

VERTEBRAL COLUMN

MANIPULATION

hypokyphosi

Derotation

WHY derotation?

- 3D scoliotic correction
- Correction of Rib Hump prominence
- Secondary curve correction in selective fusion

Balanced spine

Transpedicular screw constructs

 Allows effective derotation of single vertebra

Derotation instruments

 Allows safe and effective derotation of single vertebra as well as the whole apical area.

VCM Vertebral column manipulation

Advantages:

Good frontal and axial correction

Disadvantage:

little too forced isolated technique

Problem:

HYPOKYPHOSIS

RESULT of most correction maneuvers

HYPOKYPHOSIS

• ABSENCE or RESTRICTIVE DEROTATION

DEROTATION

Transversal plane

3D geometrical changes

Surgical posterior approach

level checking

Probe pedikle finding

Sound

_

pedikle hole checking

screw length measuring

Screwdriver - screw insertion

Screwdriver - screw insertion

Chisel – facet resection

Chisel – facet resection

Luer – cortex resection

Nonfusion surgery methods

VEPTR

= vertical expandable prosthetic titanium rib

- Indikace: kong. def. + thoracic insufficiency syndrom + kostní nezralost
- Cíl: zvětšení objemu hrudníku + korekce deformity
- Nutné opakované redistrakce

Magnetické tyče (Magnetic rods)

Growth Guided System

- Deformity correction + growth enabled
- Fusion of the apex of the curve
- The rest of spine grows guided along the rods

GGS requires definitive fusion!

Scoliosis types due to ethiology

Deformity type

Idiopathic

Neuromuscular

Age

Infantile

Juvenile

Adolescent

Adult

Congenital scoliosis

- Congenital Scoliosis- inborn spine deformity due to imperfect formation of vertebrae and their association.
- Hard to predict development and deformity progression ...

Congenital scoliosis

- deformity occurs during the first 6 weeks of embryonic development without hereditary burden, it is not hereditary
- wide diversity of severity of disability
- dg. newborns / toddlers, can occur at any time during growth

CONGENITAL scoliosis

NEW THE RESERVE OF

Hemivertebra

Unsegmented ba

Congenital scoliosis

 Failure of SEGMENTATION- failure of the connection of one or more vertebrae on one side

 Failure of FORMATION- most often, disorder of vertebra formation, shape anomalies

COMBINED failure

Usualy asymptomatic

Can lead to relative shortening of spine

- anterior
- Could affect just part of vertebra / all structures
- Solitary or multiple changes
- "posterior hemivertebra"
- -> kyphosis
- posterior much less common
- > lordosis

- Lateral
- Hemivertebra
- -> scoliosis deformity

Postižení solitární až mnohočetné

Postižení sousedních obratlů nebo v různých úsecích páteře

Hemivertebra types

closed type / neuzavřený poloobratel

bez progrese / progrese deformity

Aterior central defect

The two parts of vert. are not connected together

Combined failure

- Very common
- Multiple changes

- Very individual

Hard to predict progression in multiple changes, observation is the key.

The highest risk of progression

Fully segmented hemivertebr a + contralateral unsegmente d bar !!

Congenital scoliosis - therapy

Main rule – STOP the progression!

Observation – X-ray á 6months

if there is progression of deformity -> surgery

fastest growth—frist 5y of age

+ adolescent growth spurt

-> highest risk of progression !!!

Hemivertebra

semisegmented

non-segmented

Risk of sever scoliosis

2 main used surgical techniques

Surgery of hemivertebra

Simple fusion

- Small deformities
- Blockage of worsening
- Without correction possibility

Hemivertebrektomy

- Larger deformities
- Curve correction
- Prevention of secondary curves

Hemivertebrectomy combined approach

Hemivertebrektomy posterior approach only

Conclusion

The main factors of successful treatment of congenital scoliosis

- early detection
- good timing
- adequate surgical approach

Diastematomyelie

Skl, N

Tethered cord syndrome

CT Spin: 64 Tilt -88 Spin: 64 Til: -88 E

MRI

Neuromuscular scoliosis

Scoliosis types due to ethiology

Deformity type

- Idiopathic
- Congenital
- Neuromuscular

Age

Infantile

Juvenile

Adolescent

Adult

Neuromuscular scoliosis

- Significant progression (even after growth)
- severe deformities
- combined with pelvic and hip deformities
- high degree of associated dysfunction
 - 1· 1 y
 -
 - osteoporosis

Conservative treatement

Léčebné postupy

1. Conservative treatement

disadvantages: -

_

2. surgery

indication: -

-иаск раш

- the tendency to pressure sores

Neuromuscular spine deformity = complex deformity

- Long thoracolumbar dx convex curve
- kyphoscoliosis
- hyperlordosis
- Hip anomaly
- Pelvic obliquity

School of Health and Social Care

Postural Managemei

- s Scolio
- s Pelvic
- s Winds
- s Hip Di

Madigan & Wa

Letts et al 198

Lonstein & Be

(29 participants)

Young et al 1998

(26 participants)

Basic NM scoliosis types

SPASTIC

FLACCID

•

NM spine deformities

1. Spastic forms

2.ł

NM spine deformities

Sitting instability

Standing instability

Clinical examination of NM deformities

Correction in traction

FLACCID deformity

gravity

TYPES A. Neuropathic l.upper motoneuron failure

cerebral palsy

n bussy-Levy syndrome)

- syringomyelie
- spinal tumors
- spinal cord injury

A. Neuropathic II. *lower motoneuron failure*

Poliomyelitis

• ar atrophy Werdnig-Hoffman, Kugelberger-Welander

B. Myopathic curves

- fiber type disproportion syndrome
- congenital hypotonia
- dystrophic myotonia

SMA Infantile

•

•

•

• Disability of the hips

• Scoliosis: paralytic curves, progression

Duchene muscular dystrophy

 Gradual replacement of muscles by fibrous tissue.

Duchene muscular dystrophy

ome, a consequence, dying muscle fibers are igaments.

ıg, getting up from a lying or sitting position

Therapeutic approach

•A. Muscular dishalance of the lower lin

Β.

C.

Surgical treatement

INDICATION

- Paralytic curves collapse and instability of the spine
- Progressive deformity
- Sitting instability
- Impairment of cardiopulmonary functions by orthosis
- Back pain
- Tendency to pressure ulcers

CONTRAINDICATION

Poor overall internal condition

General or local infection

Significant non-cooperati

Surgical treatement

Pelvic fixation

Luque Galveston technique

Universal Clamp

NM scoliosis – take home

ruction deformities

Scoliosis in general-take home message

- 3D deformity!
- AIS 80% of all deformities
- Physiotherapy does not stop progression in AIS!
- Brace from 20°Cobb to stop progression in growing patient
- Surgery above 40°Cobb angle

