Neurooncology

Department of Neurosurgery FH Brno

Neurosurgery in the Past...

Armamentarium chirurgicum, Johannes Scultetus (1655)

The Beginnings of Modern Neurosurgery

- **□ Victor Horsley** (1857-1916)
 - first specialized neurosurgeon, the founder of modern neurosurgery
 - 1887 spinal tumor from laminectomy, transcranial pituitary tumor surgery

The Beginnings of Modern Neurosurgery

Pierre Paul Broca:

□ 1876 –localization and drainage of brain abscess

- 1879-localization and excision of brain tumor (meningioma)
- □ 1883-spinal laminectomy

Localization of Function

Broca Wernicke

Jean-Martin Charcot

(1825 - 1893)

John Hughlings Jackson (1835-1911)

Paul Pierre Broca (1824–1880)

Cerebral localization of function.

David Ferrier

1881, International Medical Congress,

London

Harvey Cushing (1869-1939)

WHO Classification, Incidence

1. Neuroepithelial Tumors

1.	Astrocytic Tumors	38%
2.	Oligodendroglial Tumors	3%
3.	Oligoastrocytic Tumors	1%
4.	Ependymal Tumors	2,3%
5.	Choroid Plexus Tumors	0,3%

- 6. Tumors of the Pineal Region
- 7. Neuronal and Mixed Neuronal-Glial Tumors
- 8. Other Neuroepithelial Tumors
- 9. Embryonal tumors

2.	Tumors of Cranial and Paraspinal Nerves	7%
3.	Tumors of Meningothelial Cells	26%
4.	Tumors of the Haematopoietic System	3.5%

- 5. Germ Cell Tumors
- 6. Tumors of the Sellar Region
- 7. Metastatic Tumors

Meningioma

The incidence of meningioma is given 7-8 per 100 000, but much of it is asymptomatic (perhaps up to 70 %...)

Meningioma

Meningioma

- ☐ Grade I: Meningiomas with low risk of recurrence or aggressive behavior (Meningiomafibrous (fibroblastic), Transitional, (mixed)Psammomatous, Angiomatous, Microcystic, Secretory, Lymphoplasmacyte-rich, Metaplastic)
- ☐ **Grade II:** Meningiomas with high risk of recurrence or aggressive behavior (Atypical, Clear cell, Chordoid)
- ☐ **Grade III:** Meningiomas with very high risk of recurrence or aggressive behavior

(Rhabdoid, Papillary, Anaplastic (malignant))

Meningeoma - localisation

The Goal of Procedure

- Removal of a meningioma radical resection to prevent recurrence
 - Total tumor resection, the dura mater and cranial bone resection, replacement of dura and bone by autogenous or arteficial grafts
 - Total tumor resection, coagulation of dura mater and restoration of bone
 - Total, without resection of dura, possibility of extradural residue of meningioma (cavernos sinus)
 - 4. Partial tumor resection
 - Simple decompresion or biopsy only

Convexity meningeomy

Parasagital meningeoma

Meningeoma pre/post surgery

Meningeoma – appr.

Meningeoma infratentorial

Case 1 – meningiom G I

Case 2 - meningeom G I

Glioma

- □ 40 50% primary brain tumors
 - 1) Low-grade glioma
 - □ Pilocytic Astrocytoma(G1)
 - Diffuse Astrocytoma (G2) fibrillary, protoplasmatic, gemistocytic
 - □ Oligoastrocytoma (G2)
 - Oligodendroglioma (G2)
 - ☐ Ependymoma (G2)

2) High-grade glioma

- Anaplastic Astrocytoma (G3)
- ☐ Glioblastoma Multiforme (G4)
- Anaplastic Oligodendroglioma (G3)
- Anaplastica Ependymoma (G3)

Intraaxial brain tumors -cells migration

The Goals of Malignant Tumor Surgery

Can never remove all of the tumor How much can be removed depends on:

- ☐ the type of glioma,
- Location within the brain

The Goals of Malignant Tumor Surgery

- 1. Providing diagnosis
- 2. Relieving symptomatic mass effect
- 3. "Setting up" postoperative externally delivered therapies
- Prolonging of survival through cytoreduction
- 5. Applying locally-delivered therapies

Providing Diagnosis

□ Glioma*MTS*abscess*lymfoma

Relieving Mass Effect

- High grade glioma improvement of neurological symptoms
- Low grade removal of the epileptogenic area

Preparing for Adjuvant Therapy

Resection and TMZ - EORTC 26981 (Stupp)

	2-year survival		median survival	
	+TMZ	-TMZ	+TMZ	-TMZ
GTR	37%	14%	18m	14m
STR	23%	9%	14m	12m
В	10%	5%	9m	8m

Application of Topical Therapy

☐ Gliadel (Carmustin)

□ Cerepro -sitimagene ceradenovec (GMO adenovirus + gancyklovir) – 3/2010 cancelation of authorization

Prolonging Survival - Cytoreduction

Extent of Resection Value

Do 1985 1986-1990 1990-1995 1996-2000 SOFFIETTI PHILIPPON PIEPMEIER LAWS KARIM WHITTON ITO STEIGER SHAW **BAHARY** NORTH NICOLATO **SCERATTI** LEIGHTON **PEIPMEIER JANNY PERAUD MEDBURY** RAJAN VAN VEELEN WHITTON **EYRE** LOTE SHAW **MIRALBELL** RUDOLER SHAW **SHIBAMOTO**

Indications for Surgery

- □ Low grade gliomy
 - maximum profits given the relatively long median survival
 - quality of life preservation
 - the concept of brain plasticity

Indications for Surgery

- ☐ High grade gliomy
 - KPS
 - resecability

PET

1C -11-Methionin PET, ? 2011, MOU Brno

fMRI: DTI tractografy 1.

fMRI: DTI tractografy 2

fMRI: DTI tractografy 3

kortikospinální dráha

fMRI: 3. VFT

(test slovní plynulosti)

Intraoperative Navigation

Frameless

The origin is a "frame" placed firmly against the patient's head Location of instruments is registered by the camera, tools are freely moving

The Principles of Work with Navigation

The image in the navigation monitor follow the movement of the

microscope

Intraoperative imaging

MRI On-line display

the progress of tumor resection

Fluorescent Technology

5-ALA causes the accumulation of porphyrins in tumor cells

Porphyrins are visualized in a modified microscope

The boundaries of the tumor are better seen, because they are different colors from the surrounding tissue

Visualization of the tumor using 5-ALA - insight into the resection cavity

Surgery

5-ALA, Results of the Study (322 patients)

Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ; ALA-Glioma Study Group. Neurochirurgische Klinik, Heinrich-Heine University, Dusseldorf, Germany

Electrophysiological methods

- □ NAP
- □ **MEP** (including D-wave, I-wave)
- □ **AEP** (BAEP, ABR)

- □ EcoG PRSEP
- □ DBS
- MER

Monitoring in general anesthesia

- MEP- monitoring of motor pathway
- SEP -phase reversal Localization of the central sulcus
- Direct stimulacion motor cortex, nuclei of cranial nerves, (IV. ventricle), stimulacion of white matter – subcortical structures

SEP, PRSEP

 recording cortical potentials due to stimulation of peripheral nerves (medianus, tibialis)

Awake craniotomy

- TIVA –Total Intravenous Anesthesia propofol, ramifentanyl
- Spontaneous ventilation throughout surgery
- Local anesthesia of the skin flap and dura mater
- Maximum patient comfort

Indicace of "awake surgery" - localizacion

- cortex area of special
- suplementar moto cortex
- □ Inzular cortex
- somatosensory and motor cortex

"Awake craniotomy"

operace s bdělou fází

Conclusion

- Complex use of monitoring procedures, functional MRI and navigation technology in brain glioma surgery leads to clearly improved the extent of resection
- Especially in low grade gliomas allows in combination with early postoperative MR examination to achieve significantly better radicality than in the past