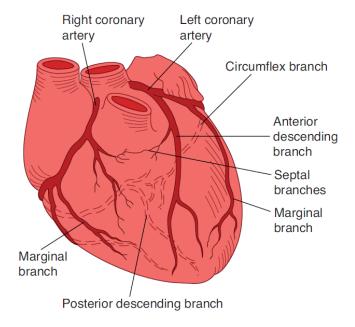
Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

Department of Physiology, Faculty of Medicine, Masaryk University

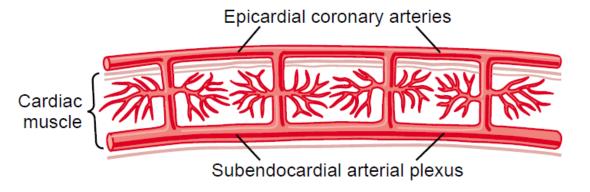
This presentation includes only the most important terms and facts. Its content by itself is not a sufficient source of information required to pass the Physiology exam.


• a. cor. sinistra

85% of the blood flow (the frontal part of septum, the conductive system, majority of the left ventricle)

• a. cor. dextra

(the right ventricle, the posterior part of septum and usually also the posterior part of the left ventricle)

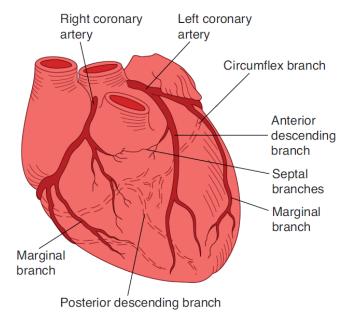

- O₂ diffusion directly from the blood situated in the cardiac cavities
- placing of coronary arteries and capillaries in the cardiac walls

Ganong s Review od Medical Physiology, 23rd edition

- epicardial coronary arteries supply most of the muscle
- intramuscular arteries (smaller) penetrate the muscle
- plexus of subendocardial arteries

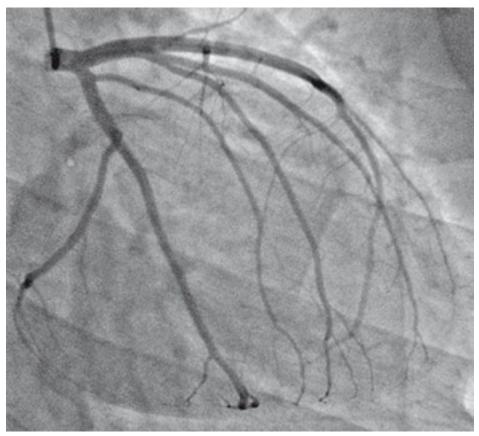
Guyton and Hall. Textbook of Medical Physiology, 11th edition

 During systole, blood flow through the plexus of subendocardial arteries is reduced (compression of intramuscular arteries) – compensated through extra vessels in the plexus (sensitivity to coronary ischemia).


• a. cor. sinistra

85% of the blood flow (the frontal part of septum, the conductive system, majority of the left ventricle)

• a. cor. dextra


(the right ventricle, the posterior part of septum and usually also the posterior part of the left ventricle)

- O₂ diffusion directly from the blood situated in the cardiac cavities
- placing of coronary arteries and capillaries in the cardiac walls
- coronary angiography

Ganong s Review od Medical Physiology, 23rd edition

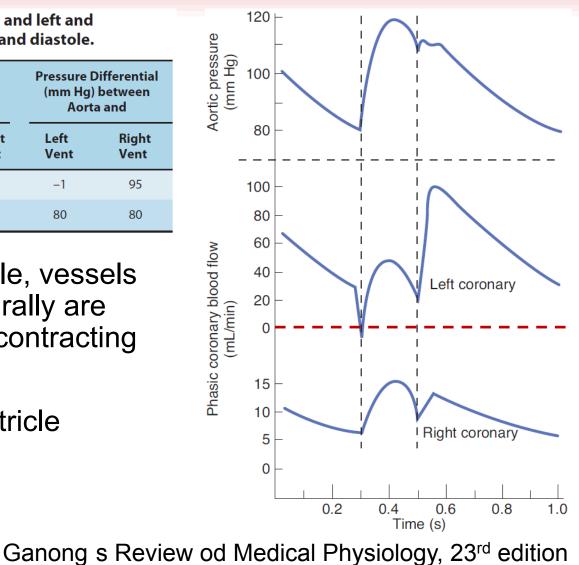
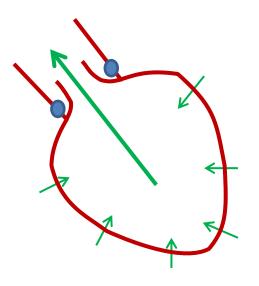
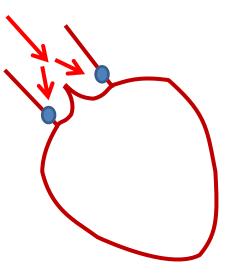

http://pochp.mp.pl/aktualnosci/show.html?id=55102

TABLE 34–4Pressure in aorta and left andright ventricles (vent) in systole and diastole.

	Pressure (mm Hg) in			Pressure Differential (mm Hg) between Aorta and	
	Aorta	Left Vent	Right Vent	Left Vent	Right Vent
Systole	120	121	25	-1	95
Diastole	80	0	0	80	80

- during the systole, vessels situated intramurally are pressed by the contracting myocardium
- left vs. right ventricle
- high heart rate





orificia of the coronary arteries

ejection

isovolumic relaxation

- O₂ extraction is almost maximal already at rest, capillaries are open
- The only possibility how to increase O₂ supply (for example during exercise) is the coronary vasodilation!

Control of coronary blood flow

reduction/interruption of the blood flow or increased demands (exercise, increased blood pressure)

hyperaemia (reactive or active) based on the metabolic vasodilation mediators: $\downarrow pO_2$, $\uparrow pCO_2$, $\downarrow pH$, $\uparrow [K^+]_e$, adenosine, bradykinin, prostaglandins, NO

Control of coronary blood flow

2) the neural regulation of the vessel diameter – secondary impact

X

- a) indirect effects
- b) direct effects

(mostly opposite)

Control of coronary blood flow

- 2) the neural regulation of the vessel diameter secondary impact
 - a) indirect effects

sympathetic system (NE, E)

 \uparrow HR + contractility \rightarrow rate of cardiac metabolism \rightarrow increased O₂ consumption \rightarrow activation of local vasodilating mechanisms

parasympathetic system (ACH) opposite changes \rightarrow vasoconstriction

Control of coronary blood flow

- 2) the neural regulation of the vessel diameter secondary impact
 - a) indirect effects
 - b) direct effects vasospastic sympathetic system (NE, E) myocardial ischemia epicardial vessels mostly α -rec. \rightarrow vasoconstriction intramural vessels mostly β -rec. \rightarrow vasodilation

parasympathetic system (ACH)

vasodilation, but not significant (only few fibers)

Control of coronary blood flow

- 2) the neural regulation of the vessel diameter secondary impact
 - a) indirect effects
 - b) direct effects

Whenever the direct effects alter the coronary blood flow in the wrong direction, the metabolic control overrides them within seconds!

- the resting blood flow: 225 ml/min (4-5% of CO)
- at physical exertion:
 - cardiac output increased 4-7fold
 cardiac work may

 higher afterload
 - higher afterload
 - coronary blood flow increases only 3-4fold!
 - efficiency of the cardiac utilization of energy has to increase to make up for the relative deficiency of coronary blood supply

Cardiac Muscle Metabolism

- at rest: 70% of energy fatty acids
- anaerobic/ischemic conditions: anaerobic glycolysis high glucose consumption + high quantities of formed lactic acid (one of causes of the ischemic pain + ↓pH)
- severe ischemia: degradation of ATP to ADP, AMP and, finally, to adenosine \rightarrow loss of adenosine into circulation through sarcolemma \rightarrow vasodilation

lost adenosine replaced by new synthesis of adenine, but very slowly (2% per hour)

Major cause of death of cardiomyocytes during ischemia is the adenosine deprival! (30 min of severe ischemia may cause irreversible changes and cell death)

Coronary Reserve

- ability of coronary vessels to adapt blood flow to the actual cardiac work (ergometry)
- the maximal blood flow / the resting blood flow
- reduction of the coronary reserve:
 - relative coronary insufficiency (too high resting demands, high resting blood flow cannot be sufficiently increased)
 - absolute coronary insufficiency (~ coronary heart disease) (the stenotic arteriosclerotic process)

Reduced coronary reserve is a limiting factor of the cardiac output, thus, also of the effort of organism!

