Dehydration in children

Homola L, Musil V
Department of Pediatric Infectious Diseases
Faculty of Medicine, University Hospital
Masaryk University, Brno

- Symptoms
- Differential diagnoses, Anamnesis,
 Physical examination
- Dehydration
- Lab tests
- Treatment

Physical examination

- behavior: apatia or excitation, thirst
- skin: colour, turgor
- head: fontanella maior, eyes, mucosa, lips
- heart: tachycardia
- abdomen: pain, resistance, peristalsis, hepatosplenomegaly
- limbs: pulsation

Dehydration degree

- Mild
 - home treatment

- Medium
 - hospitalization?
- Severe
 - ICU!!!

Mild dehydration

- weight loss <5%
 - Neonates with 4 kg, weight loss < 200g
 - adult with 60kg, weight loss < 3kg
- thirst
- oliguria 🗖

Medium dehydration

- weight loss 5-10%
- + visible sign
 - behavioral changes- apatia/irritability
 - dry or sticky mucous membrane
 - tears missing
 - sunken eyes (endophtalmus)
 - lower fontanelle
 - lower skin turgor (loss of skin elasticity)
- tachycardia

Severe dehydration

- weight loss >10%
- signs of hypovolemic shock
 - cold acral parts
 - cyanosis
 - thready pulse
 - difficult breathing
 - rapid breathing
 - lethargy
 - coma

Why laboratory tests?

- ASTRUP
- ESR
- Complete blood count
- Blood chemistry
- Urine
- Coagulation

ASTRUP

↓Hydrochlorid acid ↓ Alkalosis

↓Bicarbonate↓

Acidosis

ASTRUP

Metabolic acidosis

$$([Na^+] + [K^+]) - ([Cl^-] + [HCO^-_3])$$

Normal anion gap

$$\downarrow HCO_3 \rightarrow \uparrow Cl$$

- High anion gap
- Lactate (tissue hypoperfusion, liver dysfunction)
- Keto acids (starving, DM)
- Paraprotein (malignancies)
- Toxins (ethanol, methanol, ethylene glycol)
- Renal failure decreased excretion of acids + decreased HCO⁻₃ reabsorption

Erythrocyte sedimentation rate

- non-specific measure of inflammation
- indirectly measures the degree of inflammation

Blood Count

- Degree of inflammation
 - Leukocytosis
- Type of inflammation
 - >Neutrophils drum sticks or immature forms, toxic granulations
 - >Lymphocytes viral
 - Eosinophils (normal to 5%), more allergy, parasites (tissue helminths), cleaning after disease
 - Monocytes (normal to 10%), more EBV?
 - Neutrophil to lymphocyte count ratio NLCR
 - ✓ early parameter of systemic inflammation and stress in critically ill
 - √ >10 systemic bacterial infection (condition: neutrophilia and lymfocytopeny)

Blood Count

- dehydration
 - ↑hemoglobin and hematocrit
- anemia, bleeding
 - ↓hemoglobin, hematocrit
- degree of inflammation
 - ↓ PLT

CRP

X

PCT

CRP

- protein of acute phase, norm <8 mg/ml
- hepatic origin (NO in liver failure!)
- inflammatory condition, malignancy \rightarrow †IL-6 \rightarrow synthesis of CRP
 - → marker of inflammation, not only infection
- binds to phosphocholine expressed
 - on the dead or dying cells $\rightarrow \uparrow$ necrosis (heart attack, multiple trauma)
 - some bacteria → ↑ bacterial infection
- dynamics
 - first level: 4 6 h
 - peak: 36 48 h
 - elimination half-life time: 18 hours
- diagnostic use:
 - determining disease progress or the effectiveness of treatments

PCT

- production
 - normal: parafollicular cells of the thyroid (precursor of the calcitonin)
 - inflammation: somatic cells (protein of acute phase, norm < 0.05 ng/l)
- dynamics
 - first level: 2 3h
 - peak: 6 12 h
 - elimination half-time: 24 30 hours
- diagnostic use
 - differential diagnosis of infectious and non-infectious process
 - greatest sensitivity and specificity for the differential diagnosis of infectious and non-infectious SIRS
 - 2x negative in first $12 h \rightarrow exclusion of sepsis$
 - → marker of infection (bacterial)

- plasma osmolality (275 295 mmol/kg)
 - electrolyte-water balance
 - Na (ECF volume regulation), gluc, urea...
 - hyper-,izo-, hypo-
- Ions
 - Na, K, Cl, Ca
 - + Mg, P seizures
- urea, creatinine kidneys function
- glycaemia
 - †Glc stress, DM screening
 - ↓Glc apatia, acetonemic vomiting, seizures
- Lactate
 - tissue hypoperfusion, liver dysfunction → MAC with high anion gap
 - prognostic tool (dynamic changes)

Urine

- Urinary infection
 - leu, erc, proeinuria
- Disorder of kidney function
 - proteinuria, glycosuria
- Starvation
 - ketones
- Dehydration:
 - †urine osmolality

Coagulation

Bleeding

Liver function (short elimination half-time of coagulation parameters)

Severe conditions (sepsis)

Therapy

Rehydration – step by step

Dehydration degree

Calculation of overall volume

Fluid management

Calculation of overall volume

Basal intake of fluid:

- Less than 10 kg = 100 ml/kg
- 10-20 kg = 1000 + 50 ml/kg for each kg over 10 kg
- Greater than 20 kg = 1500 + 20 ml/kg for each kg over 20 kg

Estimated loss of fluids

- <1 year: severe 100ml/kg, medium and mild: 50 ml/kg</p>
- >1 year: severe 50ml/kg, medium and mild 20 ml/kg
- Ongoing pathological losses + ions, glucose and acidobasic correction
 - + 12% of basal intake for every 1°C of body temperature
 - + 50 150 ml for every vomiting or stool

IV rehydration

Calculate:

e.g.

Boy, 20 kg, 5-year-old, estimated weight loss to 10 % (medium dehydration)

basal intake:?

estimated loss:?

(ongoing losses)

Calculation of overall volume

Basal intake of fluid:

- Less than 10 kg = 100 ml/kg
- 10-20 kg = 1000 + 50 ml/kg for each kg over 10 kg
- Greater than 20 kg = 1500 + 20 ml/kg for each kg over 20 kg

Estimated loss of fluids

- <1 year: severe 100ml/kg, medium and mild: 50 ml/kg</p>
- >1 year: severe 50ml/kg, medium and mild 20 ml/kg
- Ongoing pathological losses + ions, glucose and acidobasic correction
 - + 12% of basal intake for every 1°C of body temperature
 - + 50 150 ml for every vomiting or stool

Calculation of overall volume

Calculate:

e.g.

Boy, 20 kg, estimated weigh loss 5 - 10 % (medium dehydration)

basal intake:

$$1000 + (50 \times 10) = 1500 \text{ ml}$$

estimated loss:

$$20 \times 20 = 400 \text{ m}$$

(ongoing losses)

• 1500 ml + 400 ml... = 1900 ml

Fluid management

Calculated volume in next 24 hours (boy, 20 kg): 1900 ml

- 1/2 in first 8 h: 950 ml (first hour 10 20 ml/kg)
 - 1. hour: speed 200 ml/h
 - next 7 hours: 750 ml ...speed of infusion 107 ml/h
- 2/2 in next 16 h: 950 ml
 - + add ongoing pathol. losses (in next hours)

+ ongoing ions and acidobasic correction (blood test results...in first 2 hours)

IV rehydration II - fluid management

Monitor for signs and symptoms

- state of consciousness
- urine output
- skin turgor
- tachycardia

Oral rehydration

mild dehydration

peroral rehydration fluid (water, Na, K, Glc) –

WHO defined

■ rice water, mineral still water

IV solutions

- Crystalloids small molecules
 - about 25 % remain in vascular space
 - Isotonic 0.9 % NaCl, Ringer fundin, Ringer lactate, Plasmalyte
 - Hypotonic 5 % Gluc, 0,45 % NaCl
 - Hypertonic 10 % Gluc, Plasmalyte + 5 % Gluc...
- Colloids large molecules
 - → severe dehydration?
 - remain in vascular space
 - E.g. Hydroxyethyl starch (HES) max. safety dose 25 ml/kg/day
 - ↑ price
 - AE: anaphylactoid reactions, coagulopathy
- (Blood products) NO: for volume expansion!

Isotonic solutions

- concertation of electrolytes is similar to that of plasma
- <u>inicial treatment</u> of dehydration (if we don't know parameters of ions and acid-base balance)
- 0.9 % NaCl
 - I: MAC high anion gap (lactate, ketoacids), renal impairment (absence of K⁺)
- Plasmalyte: electrolyte concentrations, osmolality and pH mimic plasma

	Na	K	Cl	Ca	Mg	laktát	acetát	glukonát	osmo
1/1 FR	154	0	154	0	0	0	0	0	308
Ringer	147	4	157	3	0	0	0	0	309
Hartmann	131	5	111	2	0	29	0	0	278
Plasmalyte	140	5	98	0	1,5	0	27	23	295

Hypotonic solutions

- Lower concetration of electrolytes or tonicity compared to plasma
- $<250 \text{ mmol/l} \rightarrow \text{shift to cells}$
- · NO
 - hypernatremic dehydration (>150 mmol/l)
 - pacient at risk for increased ICP
 - liver disease, trauma, burns (depletion of intravascular volume)
 - \rightarrow cerebral edema
 - hyponatremic dehydration (<130 mmol/l)
 - → deeper hyponatremia → cerebral edema

- YES
 - ongoing pathological losses (e.g. hypoglycemia)

Hypertonic solutions

- Higher concentration of electrolytes or tonicity compared to plasma
- \geq 375 mmol/l $\rightarrow \overline{ECF}$ volume expander
- E.g. Plasmalyte + 5 % gluc (572 Osmol/l), 10 % Gluc (556 mmol/l), 3% NaCl, 10 % NaCl, 7.5 % KCl...

NO

- replacement of volume (\(\forall \)Osmol)
- high speed! phlebitis, fluid volume overload → pulmonary edema

YES

- glucose and ion correction (e.g. 3% NaCl in symptom. hyponatremic. dehydration)
- Correction of MAL (NaCl)

pH

- correction of MAC <7,1
- 4,2 %/8,4 % NaHCO₃
- Add 1/3 -1/2 of calculated amount

- Ringer fundin (pH 5.1 5.4)
- Ringer lactate (pH 6.5)
- Plasmalyte (pH 7.4)

- correction of MAL >7,45
- \ \tag{CL: NaCl, KCl, NH4Cl...}

