ONCOGENETICS

"Origin, evolution and treatment of cancer"

Assoc. Prof. Martin Trbušek, Ph.D.

Department of Internal Medicine – Hematology and Oncology
University Hospital Brno
Faculty of Medicine, Masaryk University

CANCER: definition and basic classification

CANCER is an abnormal cell growth with subsequent spreading throughout the body creating metastases

Basic division follows the cell (tissue) of origin:

<u>Carcinomas</u> derive from an epithelial tissue - e.g. breast, lung, colon or pancreatic cancer

<u>Sarcomas</u> originate from mesenchymal cells (conective tissue) – e.g. bone tumors

Cancer of blood cells or hematopoietic system – leukemias and lymphomas

<u>Germ cell tumors</u> – e.g. ovarian cancer or seminomas

Origin of cancer: conceptual theories

Somatic mutation theory (SMT) VS.

Tissue organization field theory (TOFT)

SMT:

Default setting of a cell is quiescence and cancer represents "an escape" from it.

Malignant cell manifests a selective growth advantage over healty counterparts.

TOFT:

Default setting of a cell is infinite proliferation (phylogenetically)

These are tissues what keep our cells in a resting stage and prevent their unlimited proliferation

Origin of cancer: role of heredity

Inherited tumors (incl. hereditary cancer syndromes) 5-10% of all cancer cases

e.g. *Li-Fraumeni syndrome* associated with *TP53* mutations or *xeroderma pigmentosum* involving mutations in DNA repair genes

Sporadic tumors – the rest, originate in a somatic tissue

Genetic defects are underlying cause in both cases; In addition, 15-20% of cancer involve an infectious agent (causality)

e.g. high risk HPVs in cervical carcinoma

(Specific) aetiology of childhood leukemia

Analysis of "Guthrie cards" or cord blood cells

Copyright © 2006 Nature Publishing Group Nature Reviews | Cancer

...in monozygotic twins

Contribution of leukemia and lymphoma research to the SMT

Leukemias and lymphomas represent up to 10% of all cancers worldwide

Leuk and Lymp: hallmark aberrations enable molecular classification

Blood cancers have got quite clear "accomplices"

Typical translocations

Chronic myelogenous leukemia; t(9;22) BCR-ABL

Mantle cell lymphoma; t(11;14) Cyclin D1/IgH

Folicullar lymphoma; t(14;18) Bcl-2/IgH

Burkitt lymphoma; t(8;14) c-Myc/lgH

... or other characteristic aberrations

Chronic lymphocytic leukemia; del 13q, del 11q, del 17p, trisomy 12

Classic hallmarks of cancer

Emerging (additional) hallmarks of cancer

Reprogramming of a cellular metabolism and an escape from the immune system

Role of cancer stem cells (CSC) in tumor initiation and progression

Classical SC/CSC view

Human body contains ~10¹⁴ cells ~10¹¹ cells are renewed every day from the stem cells

Only a proportion of cancer cells (CSC) in a given tumor population is able to self-renew (proliferate) infinitely

Adopted from Batlle and Clevers **Nature Med** 2017

Cellular origin of cancer vs. therapy

Tumors originate from **stem cells** or **progenitor cells**, the development of which is skewed by <u>favoring self-renewal over differentiation</u>

This phenomenon hardly aggravates successfull (curable) therapy through a minimal residual disease presence and subsequent relapse based on a resistant clone proliferation

Clonal evolution and a narrow throat of therapy: case of AML

Gene mutations as a hallmark of cancer

Frederick Sanger Cambridge University

Classic PAGE ³⁵S labelling

Breath-taking technological advancements in DNA sequencing

State-of-the-art: custom-directed NGS

Cancer Genome Landscapes

Driver mutations vs.
Passenger mutations

Driver genes: ~125 71 TS/54 ONC

PRINCIPALS OF DARWINIAN SELECTION

Additional cancer genome modifications

- Epigenetic silencing of tumor-suppressor genes (promoter methylation)
- Global (whole-genome) hypomethylation

Recurrent mutations in cancer – CLL as an example

The most frequent mutations in the genes: SF3B1, ATM, TP53

Intraclonal heterogeneity wthinin tumor population

Count	Coverage	Frequency	Gene_function	RefGene	Exon_number	cDNA	Codon
1752	1752	100	exonic	ATM	exon40	c.5948A>G	p.N1983S
2261	2452	92,21	exonic	ATM	exon22	c.3161C>G	p.P1054R
690	2962	23,3	exonic	ATM	exon50	c.7311C>A	p.Y2437X
100	1203	8,31	exonic	ATM	exon24	c.3433_3435del	p.1145_1145del
74	1433	5,16	exonic	ATM	exon30	c.4578C>T	p.P1526P
46	1281	3,59	exonic	ATM	exon43	c.6258T>A	p.Y2086X
243	8231	2,95	splicing	ATM	exon19	c.2921+1G>A	p.P962Q
19	699	2,72	exonic	ATM	exon25	c.3705_3709del	p.P1235fs
25	1087	2,3	exonic	ATM	exon5	c.480delT	p.S160fs
24	1046	2,29	exonic	ATM	exon5	c.483G>C	p.Q161H
67	3357	2	exonic	ATM	exon26	c.3837G>A	p.W1279X
73	5626	1,3	exonic	ATM	exon26	c.3952_3960del	p.1318_1320del
64	5151	1,24	exonic	ATM	exon49	c.7181C>T	p.S2394L
11	904	1,22	exonic	ATM	exon63	c.9022C>T	p.R3008C
42	3514	1,2	exonic	ATM	exon10	c.1402_1403del	p.K468fs

(12) affected biochemical pathways in cancer

99.9% of all alterations in cancer cells provides **no selective growth advantage**

Mutability of human genome is normal; However, normal is also to avoid aberrant, dangerous cells through continuously operating apoptosis....

Model of tumor initiation and progression

Interfence with DNA replication results in apoptosis induction in tumor cells

Cleaved proteins PARP and Caspase-3 demonstrate a presence of advanced apoptosis after the Chk1 inhibition; cells: MEC-1, TP53-mutated CLL

Apoptosis: "optimal cell death" in cancer therapy

Fig. 5 —Diagram to illustrate the morphological features of apoptosis.

Physical cell distruction

"Trash" elimination (recycling)

Discovery of p53 protein: a milestone in oncology research

Reported in 1979, interaction with a T-antigen of SV40 virus

David P. Lane Imperial Cancer Research Fund, London

Arnold J. Levine Princeton University, New Jersey

Lloyd John Old Memorial Sloan-Kettering Cancer Center, New York

The p53 research from the historical perspective

Oncogene or tumor-suppressor?

Eliyahu D et al. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 1984; 312: 646-9.

Parada LF et al. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 1984; 312: 649-51.

Jenkins JR et al. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 1984; 312: 651-4.

Impact of the TP53 gene disruption on tumor development

Elefants have low cancer rates (Peto paradox)
This is (among others) owing to ~20 copies of the TP53 gene

Donehower et al., *Nature* 1992 Adopted from: IARC TP53 database

Hypoxia Telomere shortening

PIGs

Cancer from the point of view of the cell cycle

Analysis of the *TP53* gene in CLL patients in the University Hospital Brno

Del(17p) using I-FISH
Mut TP53 using FASAY and DNA sequencing

TP53 defects impair a therapeutic response

Test of cellular viability in vitro

Treatment FLU 48 h

DNA damage induces p53-dependent response

TP53 defects support tumor cells' proliferation

²H₂O accumulation in leukemic cells located in LNs

p53 mutations associate with poor survival in CLL patients

A: wt-p53/mut-lgVH

MS: not reached

B: mut-p53/mut-lgVH

MS: not reached

C: wt-p53/unmut-lgVH

MS: 69 months

D: mut-p53/unmut IgVH

MS: 23 months

(A) vs. (B) P=0.016

(B) vs. (D) P=0.018

(C)vs. (D) P<0.001

(A) vs.(C) P<0.001

Note: survival assessed from time of p53 defect identification / investigation showing wt-p53

Individual p53 mutations differ in their impact

Fig. A: all mutations

Fig. B: mutation + del(17p)

A: wt-p53

MS: 69 months

B: nonmissense p53 mutations

MS: 36 months

C: p53 missense out of DBMs

MS: 41 months

D: p53 missense in DBMs

MS: 12 months

(D) vs. (C) P=0.009

(D) vs. (B) P=0.002

Trbusek et al., J Clin Oncol 2011

Prognostic impact of TP53 mutations in cancer

Adopted from:

Robles AI, Harris CC: Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2010; 2: a001016

p53 activation: breaking a loop with MDM2

Adopted from: IARC TP53 database

Impact of ATM defects on p53 activation

Odd columns: controls Even columns: IR (5Gy)

1,2 - wt

3,4 – sole 11q-

5,6 - ATM-mut-1

7,8 – ATM-mut-2

Onocogenes: driving cancer cell's proliferation

CLL patients WB c-Myc

Frequently TFs
Cooperation ONC/TS

Treatment of cancer

Surgery (primary site, localized matastases); local radiotherapy

Systemic therapies

- (Combination) chemotherapy; total body irradiation
- Stem cell transplantation (hematopoiteic and solid tumors)
- Immunotherapy, including "CAR T-lymphocytes"
- "Differentiation" therapy (e.g. ATRA in APML)
- Use of monoclonal antibodies
- Targeted therapy (small molecule inhibitors)

Progress in the treatment of cancer

- Satisfactory outcomes
- Chronic myeloid leukemia
- Some childhood leukemias (e.g. ALL, ETV6-RUNX1-positive)
- Hodgkin's lymphoma
- Testicular tumor in young men

Favorable genetic features:

- Hallmark abnormality, low genomic instability
- ➤ Low pressure to inactivate the TP53 tumor-suppressor gene

Progress in the treatment of cancer

- Unsatisfactory outcomes
- Malignant melanoma (metastatic variant, OS <10% at 5 years)
- TP53-mutated chronic lymphocytic leukemia (median OS ~3 years)
- Cervical carcinoma (high-risk HPVs, direct p53 inactivation)

Unfavorable genetic features:

- Genetic heterogeneity of tumor cell population
- ➤ Inactivation of genes responding to therapeutic intervention within the DNA damage response (DDR) pathway

Treatment "by differentiation": APL

Figure 4 | Reversing differentiation arrest in leukaemias. a | Leo Sachs used murine leukaemic cell lines to demonstrate reversible proliferation/differentiation uncoupling in cancer 68 . b | Zhu Chen, Zhen-Yi Wang and their colleagues in China developed all-trans retinoic acid (ATRA) as an effective therapeutic agent for acute promyelocytic leukaemia (APML) 123 . c | Differentiation induction in APML by ATRA. Left panel: untreated blast-like leukaemic cells; middle panel: differentiated, granulocytic cells after treatment with ATRA; right panel: differentiated cells after treatment with arsenic trioxide (As $_2$ O $_3$). Part a: image courtesy of the Weizmann Institute of Science, Israel; part b: image courtesy of the US National Foundation for Cancer Research; part c: reproduced from REF. 124, Nature Publishing Group.

Therapy using monoclonal antibodies

J Clin Oncol. 2010;28:3525.

Ofatumumab vs. Rituximab

- Targeting to a cell surface epitope (specificity vs.effectivity)
- 1st mAb in clinic: rituximab, 1997
- Available also fo solid cancers
 (e.g. trastuzumab in breast cancer)
- Complex machanisms of action (CDC, ADCC, apoptosis)

Protein targeting (inhibition) using small molecules

- Kinases: relatively "easy"inhibition of enzymatic activity
 All clinically approved small molecule drugs target kinases
- Oncogenes: only minority of them have enzymatic activity In contrast, many oncogenes have multiple interactions
- ➤ Tumor-suppressors: very difficult replacement of the lost function. An option is to target a complementary activated pathway (e.g. BRCA loss → addiction to PARP activity).

Synthetic lethality within DNA damage response

Adopted from: Fang B, J Med Chem 2014

Specific targeting may lead to distinct outcomes

Mutation **V600E** in **BRAF protein** is detected in **malignant melanoma** (MM) as well as in metastatic **colorectal cancer** (CRC)

However, a specific inhibitor of BRAF signalling (Vemurafenib) is hihgly effective in MM, but not in CRC

The reasons is an activation of the PI3K/AKT pathway eliminating the effect of the inhibition in the latter cancer

Current portfolio of specific molecular targeting

Summary

- Cancer is a "disease of genes", regardless of the presence or absence of a heritable predisposition
- Genetic background of different cancers have some common features,
 but overall variability is huge and requires "the cancer-specific" approach
- Major obstacle of effective therapy represent in many cancers defects in the TP53 gene (or the p53 pathway in general)
- Technologial advancements in tumor cell analyses are enormous (e.g. NGS), however the data interpretation remains sometimes (frequently?) elusive
- Molecular therapy seems to be directed to a patient-specific "coctail" of several drugs with accompanying mechanisms of action (no "one pill" at horizon…..)

THANK YOU VERY MUCH FOR YOUR ATTETION!

m.trbusek@volny.cz