MUNI Med

Overview of molecular biology exp. methods used in pathophysiology

DNA Sequencing developed by Frederick Sanger

- determine the DNA sequence
- based on DNA replication
- dideoxy nucleotide missing hydroxyl group at 3' position terminate DNA extention

 $(P)(P)(P) - C^{2}$ Thymine 4' 1' 3' 2'OH H

Dideoxythymidine triphosphate (ddTTP) toxic nucleoside analog Deoxytnymidine triphosphate (dTTP) natural nucleoside in DNA

DNA synthesis and termination

- DNA chain extends in $5' \rightarrow 3'$ direction
- Requires nucleotides 3' –OH group
- Extension of the DNA chain is randomly terminated by dideoxynucleotides

Dideoxythymidine triphosphate (ddTTP) toxic nucleoside analog

DNA Extension by dATP, dGTP, dTTP, dCTP

resulted in to single band acquired on the gel electrophoresis

DNA Extension by dATP, dGTP, ddTTP, dCTP

resulted in to two bands acquired on the gel electrophoresis

DNA Extension by dATP, ddGTP, dTTP, dCTP

resulted in to two bands acquired on the gel electrophoresis

DNA Extension by **dATP**, **dGTP**, **dTTP**, **dCTP** + small amount of **ddATP**

Primer: 5'-CGTCGAC-3' Template : 3'-GCAGCTGATGCCTATGGCTACCGA-5'

Reaction A CGTCGACTA CGTCGACT<u>A</u>CGGA CGTCGACT<u>A</u>CGG<u>A</u>TTCCGA CGTCGACT<u>A</u>CGG<u>A</u>TTCCGA

size 9 nt 13 nt 19 nt 25 nt

multiple bands acquired on the gel electrophoresis

Dideoxy DNA Sequencing

Four separate DNA sequencing reactions are set up

Reaction G: dATP, dGTP, dTTP, dCTP + ddGTP Reaction A: dATP, dGTP, dTTP, dCTP + ddATP Reaction T : dATP, dGTP, dTTP, dCTP + ddTTP Reaction C : dATP, dGTP, dTTP, dCTP + ddCTP

DNA polymerase is added to each and

- complementary strand is synthesized
- Dideoxy-nucleotides terminate synthesis

DNA fragments analytical separation

- Incorporation of a particular ddNTP produces DNA fragments
- DNA fragments are then run on a polyacrylamide gel (PAGE)
- DNA fragments, which differ by single nucleotide in size can be separated and visualized or detected
- Fragments from the four reactions (G, A, T, C) are run apart
- Location of a band on the gel corresponds to the position of that nucleotide in the linear sequence

Capillary electrophoresis

24 / 48 capillaries high resolution separation technique

GATC

Fluorescence Automated Sequencing

10

- Each of the dideoxynucleotides is labelled with a different fluorescent dye
- All four of the reactions (G, A, C, T) can take ٠ place in same tube
- The fragments are therefore loaded on to same ٠ lane of the gel
- fluorimeter and computer are linked to the gel and they detect and record the dye attached to the fragments as they come off the gel
- Sequence is determined by the order of the dyes coming off the gel

20

30

Pyrosequencing

Sequencing-by-synthesis (SBS)

- ATP acts as fuel to the luciferase-mediated conversion of luciferin to oxyluciferin that generates visible light
- Each bases has a different label on the final phosphates - label of released pyrophosphate is recorded

Oxford Nanopore Technologies Ltd

- 2048 membrane wells
- Motorprotein / Adaptor
- DNA or direct RNA seq
- 400 bp/s output monitored by current flux about 20-30 pA under 180 mV
- Adaptation of α-hemolysin α-HL nanopores for the identification of single molecules (pore-forming toxin from Staphylococcus aureus responsible for the cell lysis)
- The leader adapter guides the dsDNA fragments to the vicinity of pores, and the sequencing process begins when the leader motor protein unzips the dsDNA enabling the first strand (template) to pass through the nanopore one base at a time
- bacteriophage phi29 DNA polymerase (phi29DNAP)

Genomic DNA footprinting - applied seq.

dimethyl sulfate (DMS) *in vivo* protection assays

labeling / Sanger seq. gel separation

DNAI protection crosslinking (glutaraldehyde) - CHIP (PCR/seq)

Methylation-specific PCR (MSP):

used to detect methylation of CpG islands in genomic DNA. sodium bisulfite treatement , which converts unmethylated cytosine bases in to uracil sulphonization /de-amination /de-sulph. MSP using qPCR can also be performed to obtain quantitative rather than qualitative information about methylation.

Tollefsbol T (ed.): Handbook of Epigenetics: The New Molecular and Medical Genetics. 1st edition. London, San Diego: Academic Press, 2011.

Deep Sequencing

- error versus mutation
- cell clones representation
- identification of SNV

Transcriptomics

RNA-seq alternative to **Microarray** cDNA seq

SAGE

Serial analysis of gene expression cDNA is generated from the RNA but is then digested into 11 bp "tag" fragments using restriction enzymes

CAGE

Cap Analysis of Gene Expression biotinylation of the 7-methylguanosine cap of Pol II transcripts, to pull down the 5'-complete cDNAs reversely transcribed from the captured transcripts

Key features for abm's RNA-Seq service					
Sequencing Platform	Illumina				
Sequencing Scale	 8 million reads for rapid expression analysis 40 million reads for detecting alternative splice forms 80 million reads for identifying low-abundance coding and non- coding transcripts Higher coverage available up to 400 million reads per sample 				
Starting Material	0.1μg – 4μg of Total RNA 10-100ng of Poly-A enriched mRNA 10-100ng of rRNA depleted RNA				
Sequencing Type	75 bp single end or paired end sequencing. Longer read lengths available upon custom request.				
Bioinformatics Analyses	FastQC on raw sequencing data (included) Read alignment and estimation of gene expression (included) Differential gene expression analysis Functional annotation				

Project	No.	Part Number/ Description	Qty.	Unit Price (USD)	Line Total (USD)
16 human T cell of RNA library prep & sequencing Hiseq, PE150 Q30≥80%	1	Total RNA Isolation	16	30	480
	2	RNA library prep (rRNA depletion by Ribo-ZeroTM& directional library)	16	280	4480
	3	Sequencing of PE150 (40M reads=12G/sample)	16	240	3840
	4	Data Delivery via 1T hard disk drive	1	150	150
	Total USD8950.00)

Hi-C all-vs-all high-throughput chromosome conformation capture cross linking + fragment ligation high throughput fragment sequencing

Topologically Associating Domains TADs

Nature Reviews | Genetics

Topologically Associating Domains TADs and chromatin associated RNA

Nuclear Pores Bind Inducible Genes Nup98 ChIP-seq

Uninduced

Transcriptional Memory

NPCs bind silent ecdysone-inducible genes

Nup98 mediates enhancer-promoter looping and promotes transcriptional memory

Monitoring of nucleosome occupancy in the human genome:

ChIP-seq specifically and genome-wide assay chromatin immunoprecipitation with DNA sequencing, to obtain the DNA sequences which interact with transcription factors and nucleosome-associated sequences

DNase / MNase-seq chromatin accessibility assay genome-wide DNase I hypersensitive sites sequencing micrococcal nuclease digestion (Staphylococcus aureus) identification of accessible DNA regions in the genome DNA bound to histones or other chromatin-bound proteins transcription factors / repressors / regulators SWI may remain undigested

- ATAC-seq THSS - Tn5 hypersensitive site

Assay for Transposase-Accessible Chromatin using sequencing mutated hyperactive transposase Tn5 transposase inserts sequencing adapters into unprotected regions

- FAIRE-seq

Formaldehyde-Assisted Isolation of Regulatory Elements formaldehyde cross-link DNA and proteins, sonication and **phenol-chloroform extraction -**nucleosomes will preferentially sit in the organic phase and **nucleosome-depleted regions** will be purified from aqueous phase

Highlights

 ATAC-seq accessibility at sperm and oocyte promoters is maintained in the embryo

Sperm-specific

ChIP-seq

Heatmaps and average profiles showing Foxa1, ERa, and AR ChIP-seq signal co-localized around transcription start sites TSS in sperm chromatin at all Refseq annotated genes. Sites are ordered by k-means clustering of RNAPIISer5ph and RNAPIISer2ph signal between TSSs and TTSs

