MUNI NED

MUNI MED

Shock

Definition of shock

- Severe tissue hypoperfusion resulting in low supply of oxygen to the organs
- Systemic hypotension (of various causes) is present
- P = Q × R
- Q ~ CO = SV × f
- CO depends on

a) cardiac function

b) venous return (\rightarrow preload)

• R – systemic resistance (mostly arterioles) - afterload

Cardiac and venous function

Phases of shock

- Compensation of initiating cause
- Decompensation
- Refractory shock

Compensatory mechanisms and their limits

- Activation of sympathetic nervous system (tens of seconds)
- Activation of RAAS (cca 1 hour)
- Vasoconstriction (if possible)
- Vasodilatation in some tissues (esp. myocardium)
- Positively inotropic effect of SNS (if possible)
 - but at cost of higher metabolic
 requirements of the heart

 $M \vdash I$

Compensatory mechanisms and their limits

- Increased heart rate
 - but CO decreases in high HR (>150 bpm)
- Keeping circulating volume by lower diuresis
 - but at cost of acute renal failure
- Shift to anaerobic metabolism
 - but at cost of \downarrow ATP a \uparrow lactate (acidosis)
- Shift of saturation curve of hemoglobin to right (^{2,3-DPG})

Hyperglycemia

- but decreased utilization of Glc in the periphery

Decompensated shock

•↓ BP

- •↓ diuresis
- Brain hypoperfusion involvment of mental functions
- Acrocyanosis (in peripheral hypoperfusion)
- Tachypnoe
- Treatment colloid solutions, catecholamines

Shock at the cellular level

Mitochondrial dysfunction (result of hypoxia)

- lower production of ATP
- ↑ ROS production by dysfunctional mitochondria
- Failure of ion pumps

(e.g. Na/K ATP-ase $\rightarrow \uparrow$ intracelular Ca²⁺)

- Lysosomal abnormalities
 - release of lysosomal proteases
- •↓ intracelular pH

Refractory shock – Vicious circles

1) Vasodilatation \leftrightarrow hypoperfusion

- Endothelial cells contain two isoforms of nitric oxid synthase constitutive (eNOS) and inducible (iNOS)
- In lasting hypoxia of endothelial cells there is increased iNOS activity (primarily physiological mechanism)
- \uparrow NO increases vasodilation and hypoperfusion

2) Myocardial hypoxia ↔ lower contractility

- Lower myocardial perfusion leads into ↓CO, which further reduces coronary flow
- Myocardium does not benefit from the shift of Hb saturation curve

– efficiency of O_2 extraction is already at its maximum

3) Brain hypoperfusion $\leftrightarrow \downarrow$ SNS activity

- Lower perfusion of vasomotor centre leads first into SNS hyperactivity, which is then followed by its supression
- That leads into ↓brain perfusion

Other vicious circles in refractory shock

Forms of shock

- a) Hypovolemic shock (i.e. absolute fluid loss)
 - low preload
- b) Distributive ("warm") shock
 - low resistance, afterload, CO might be increased
- c) Cardiogennic shock
 - normovolemia, normodistribution, low CO in bad cardiac function
- d) Obstructive shock
 - low preload of one ventricle in normovolemia and subsequent lowering of CO
 - pathophysiology similar to cardiogennic shock

Cardiac and venous function in shock

Hypovolemic shock

- compensation by the vasoconstriction and cardiac mechanisms
- **Distributive shock**
 - compensation by cardiac mechanisms
 (vasoconstriction is usually impossible)
- Cardiogennic (and obstructive) shock
 - compensation by vasoconstriction

Hypovolemic shock - causes

- Acute bleeding
- Burns, trauma
- Rapid development of ascites
- Acute pancreatitis
- Severe dehydratation
 - Vomiting, diarrhoea
 - Excessive diuresis (e.g. in diabetes insipidus)

Distributive shock - causes

• Anafylactic shock

Anafylactoid shock

- Mediators of mast cells, but without IgE
- E.g. snake venoms, radiocontrasts

Septic shock

- Role of bacterial lipopolysaccharides
- Bacterial toxins
- IL-1, TNF- α stimulate synthesis of PGE₂ and NO

Neurogennic shock

• Vasodilatation as a result of vasomotoric centre (or its efferent pahways) impairment

Cardiogennic shock - causes

- Myocardial infarction
- Arrhythmias
- Valvular disease (e.g. rupture of papillary muscles)
- Decompensation of heart failure in dilated/restrictive cardiomyopathy, amyloidosis
- Overload by catecholamines ("tako-tsubo cardiomyopathy" apical akinesia + basal hyperkinesia)
- Rupture of ventricular septum
- Obstructive shock

– e.g. cardiac tamponade, massive pulmonary embolism, aortic dissection

Organ complications in shock

Lungs

• ARDS

Liver

necrosis of hepatocytes

• GIT

- stress ulcer
- $\circ~$ Damage of intestinal mucosa by ischemic necrosis \rightarrow sepsis

Kidneys

- Acute renal failure in vasoconstriction of a. afferens
- Acute tubular necrosis during ischemia

Disseminated intravascular coagulopathy (DIC)

- Systemic exposure to tissue factor
- Consequence of the vessel wall damage
- Moreover, slower blood flow contributes to the extent of coagulation reactions
- Two phases:
 - 1) Formation of microtrombi (with local ischemia)
 - 2) Bleeding as a result of consummation of coagulation factors
- DIC is especially frequent in septic shock

 $M \in D$

MUNI MED

https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/disseminated-intravascular-coagulation

Systemic Inflammatory Response Syndrome(SIRS)

- Systemic activation of immune mechanisms
- Causes:
 - infections (sepsis)
 - Shock caused by non-infectious causes (diffuse tissue damage in hypoxia)
 - Non-compatible blood transfusions
 - Radiation syndrome (esp. GIT form)

Acute Respiratory Distress Syndrome (ARDS – "shock lung")

- Result of lung inflammation in SIRS, pulmonary infections, aspiration of gastric juice, drowning
- Exsudative phase (hours): cytokine release, leukocyte infiltration, pulmonary edema, destruction of type I pneumocytes
- Proliferative phase: fibrosis,
 ↑ dead space,
 proliferation of type II pneumocytes
- Reparative phase: ↓ inflammation, ↓ edema, continuing fibrosis, in most cases permanent restrictive diseases

Multiorgan dysfunction syndrome (MODS)

- Failure of more organs at once (lungs, liver, GIT, kidneys, brain, heart)
- It can develop after initial insult (days or weeks)
- Hypermetabolism, catabolic stress
- Can both preceed or result from SIRS

 $M \vdash D$

General principles of treatment

- Treatment of underlying cause
- Positively inotropic drugs, vasopressors

(e.g. catecholamines – but: they can worsen the situation in obstructive shock)

- Colloid solutions, crystaloid solutions (but: there is a risk of edema in cardiogennic shock)
- O₂
- i.v. corticoids (anafylaxis, SIRS?)
- ATB (septic shock)
- Mechanic circulation support (cardiogennic shock)
- Anti-shock position

MUNI Med

https://upload.wikimedia.org/wikipedia/commons/a/ad/Sepsis_Steps.png

MUNI NED