

Diabetes mellitus

Practicals – experimental diabetes mellitus in laboratory animal

Definition of diabetes mellitus (DM)

- DM is a group of metabolic disorders characterized by hyperglycemia as a result of impaired effect of insulin
 - absolute
 - insulin is missing
 - relative
 - insulin resistance
 - impaired insulin secretion (gluco- and lipotoxicity)
- chronic hyperglycemia leads to cell & tissue damage (complications)
 - retina
 - kidney
 - nerves

Diagnosis of DM

- classical symptoms of diabetes + random plasma glycemia ≥ 11.1 mmol/l
 - any time of the day
 - symptoms include polyuria, polydipsia and rapid loose of weight
- FPG (fasting plasma glucose) ≥ 7.0 mmol/l
 - fasting means at least 8 h from the last meal
- 2-h PG (postprandial glucose) ≥ 11.1 mmol/l during oGTT
 - according to WHO standard load of 75 g of glucose

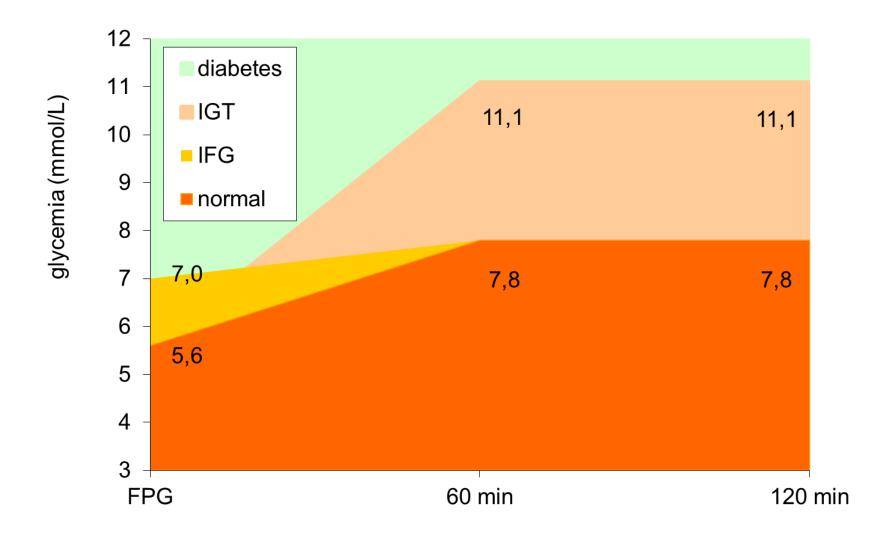
Interpretation of glycemia

• FPG:

- < 6.1 mmol/l = normal glycemia
- 6.1-7.0 mmol/l = IFG (impaired fasting glucose)
- \geq 7.0 mmol/l = diabetes

• oGTT – 2h PG:

- < 7.8 mmol/l = normal glucose tolerance
- 7.8-11.1 mmol/l = IGT (impaired glucose tolerance)
- \geq 11.1 mmol/l = diabetes



Oral glucose tolerance test

- tool used for diagnosis of
 - diabetes mellitus
 - presence of diabetes in the family,
 - in obese patients and in hypertesion,
 - patients with glycemia 6.1 7.0 mmol/l twice in the row
 - gestational diabetes
 - early (< 12th week of pregnancy in women with at least 2 risk factors
 - age > 30 years
 - · presence of diabetes in the family
 - macrosomia
 - obesity
 - diabetes mellitus in previous pregnancy
 - glycosuria
 - hypertension in previous pregnancy
 - repeated abortions
 - "prediabetes"
 - impaired glucose tolerance (IGT)
 - 2-h PPG ≥7.8 <11.1 mmol/l during oGTT
 - impaired fasting glucose (IFG)
 - FPG ≥5.6 <7 mmol/l
- procedure
 - FPG, drinking glucose solution (75 g + 250 ml water) within 5 10 min, glycemia measurement after 60 and 120 min

oGTT interpretation

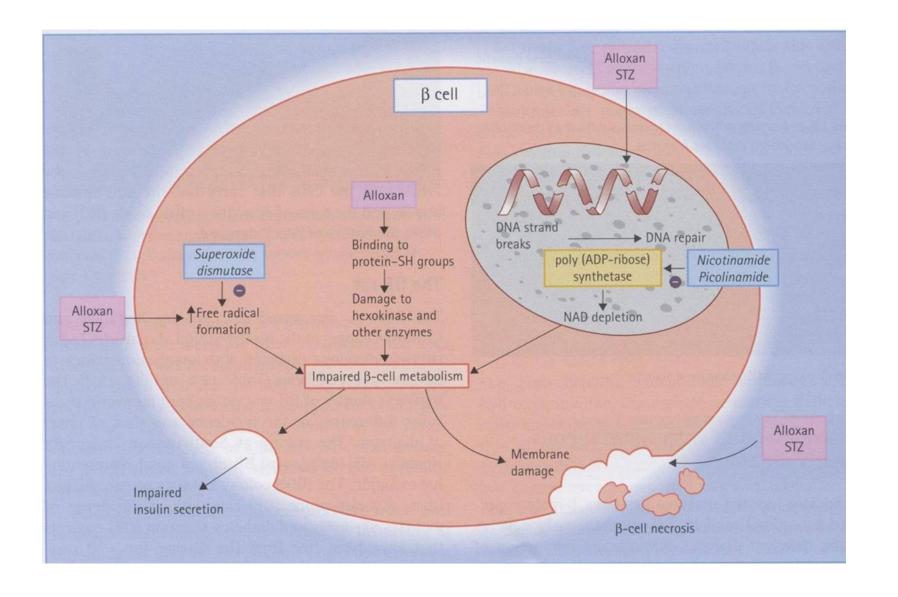
Animal models of type 1 diabetes

- 1889 pancreas removal
 - Minkowski and Von Mering
 - diabetic syndrome in dog
- Banting and Best
 - insulin discovery and testing
 - the Nobel Prize in Physiology or Medicine 1923
- exp. diabetes induced in various species
 - β-cells toxins and viruses
- specific strains in which insulin-deficient diabetes develops spontaneously

Sir Frederick Banting and Dr. Charles Best co-discoverers of Insulin

Chemically induced insulin-deficient diabetes

alloxan


- first known diabetogenic chemical agent (1943)
 - islet-cells necrosis in rabbit
- high doses
 - β-cells necrosis
- acts on membrane and interior
 - inhibits insulin release
 - is taken up into the β-cell
 - glucokinase, PARP
 - free radicals
- practical problems in vivo
 - instability at physiological pH
 - dosage variation with age and species
 - toxicity on other organs

streptozotocin (STZ)

- induces severe diabetes
 - i.v. or i.p.
- most commonly used model
- β-cell necrosis within 1-2 days
- insulin falls to 10-30%
- hyperglycemia 20-30 mmol/l
- at dosage 50 mg/kg severe ketosis does not develop
 - survival without insulin replacement
- may share cytotoxic mechanisms with alloxan

Mechanisms of alloxan and STZ action

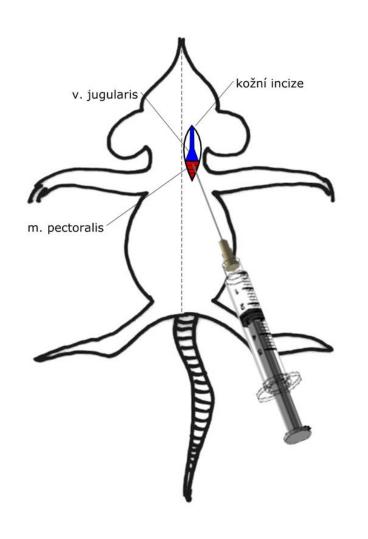
Animal models with spontaneous T1DM

- BB rat (BioBreeding)
 - defects in immunity
 - inflitration of islets with T lymphocytes
 - autoantibodies against GAD (glutamic acid decarboxylase) are present
 - severe hypoinsulinemia and hyperglycemia
 - two main T1DM susceptibility genes
 - 8 additional loci

- NOD mouse
 - non-obese diabetic
 - autoimmunie diabetes
 - diabetes develops as a result of insulitis
 - NOD mice will develop spontaneous diabetes when left in a sterile environment
 - affects 80 % of females and 20 % of males

Summary of rodent models of T1DM

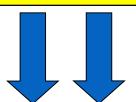
Induction mechanism	Model	Main features	Possible uses
Chemical Induction	High dose streptozotocin Alloxan Multiple low dose streptozotocin	Simple model of hyperglycaemia. Model of induced insulitis.	New formulations of insulin Transplantation models. Treatments that may prevent beta cell death
Spontaneous autoimmune	NOD mice BB rats LEW.1AR1/-iddm rats	Beta cell destruction due to an autoimmune process	Understanding genetics of type 1 diabetes Understanding mechanism of type 1 diabetes Treatments that may prevent beta cell death Treatments that may manipulate autoimmune process
Genetically induced	AKITA mice	Beta cell destruction due to ER stress. Insulin dependent.	New formulations of insulin Transplantation models. Treatments to prevent ER stress (could also be used in type 2 diabetes research)
Virally-induced	Coxsackie B virus Encephalomyocarditis virus Kilham rat virus LCMV under insulin promoter	Beta cell destruction induced by viral infection of beta cells	Establish potential role of viruses in the development of type 1 diabetes



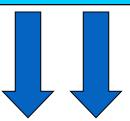
Summary of rodent models of T2DM

Induction mechanism	Model	Main features	Possible uses
Obese models (monogenic)	Lep ^{ob/ob} mice Lepr ^{db/db} mice ZDF Rats	Obesity-induced hyperglycaemia	Treatments to improve insulin resistance Treatments to improve beta cell function
Obese models (polygenic)	KK mice OLETF rat NZO mice TallyHo/Jng mice NoncNZO10/LtJ mice	Obesity-induced hyperglycaemia	Treatments to improve insulin resistance Treatments to improve beta cell function Some models show diabetic complications
Induced obesity	High fat feeding (mice or rats) Desert gerbil Nile grass rat	Obesity-induced hyperglycaemia	Treatments to improve insulin resistance Treatments to improve beta cell function Treatments to prevent diet-induced obesity
Non-obese models	GK rat	Hyperglycaemia induced by insufficient beta cell function/mass	Treatments to improve beta cell function Treatments to improve beta cell survival
Genetically induced models of beta cell dysfunction	hIAPP mice	Amyloid deposition in islets	Treatments to prevent amyloid deposition Treatments to improve beta cell survival
	AKITA mice	Beta cell destruction due to ER stress.	Treatments to prevent ER stress Treatments to improve beta cell survival

Experimental induction of DM



- anesthesia induction
 - Narkamon/Rometar, 0.5 ml/100 g of weight
 - intraperitoneal administration
- skin incision
- i.v. administration of alloxan
 - In the jugular vein
- suture
 - the wound is closed with several individual stitches
- second part of the experiment follows after 1 week


The experiment

i.p. ANESTHESIA

1 week before 1/2 animals ALLOXAN i.v. 30 mg/kg

- 1) blood sample from a tail vein
- 2) measurement of FPG on glucometer

application of 20% glucose 1ml/100g i.p.

- 3) repeated measurement of glycemia on glucometer in 30 a 90 min time intervals
- 4) determination of glucosuria in urine sample

results:

- graph FPG 30mPG 90mPG
- comparison of DM x non-DM