GENERAL PHARMACODYNAMICS

Receptor theory of drug action

Receptor-effector system

= complex of processes

extracelullar signal -----> intracell. signal cascade-----> effector (own effect)

- ✓ **receptor** = protein, which interacts ligands
 - involved in signal transduction
- ✓ effector = enzyme, ionic channel etc. change in the activity leads to the effect of drug
- ✓ ligand (signal molecule) = molecule able to bind to specific receptor
 - endogenous neurotransmitters, hormones
 - exogenous xenobiotics, drugs

Receptor-effector system

Affinity

✓ the ability of the ligand to bind to the receptor $1/K_d$

Instrinsic activity

✓ ability to evoke an effect after binding to receptor

Induction of pharmacological effect is essential as well as sufficient amounts of receptor ligand!!!

Receptor-effector system

Relation between dose and effect

Intrinsic activity (classification of ligands)

Ligand classification

Full agonist

- IS=1

Agonist Partial agonist - dualist

- IS in a range from O< to >1
 - Acts as antagonist in the presence of full agonist

Ligand classification

Antagonist

✓ IS = 0

- ✓ IS = -1
- \checkmark Stabilizesthe receptor in the constitutive activity

Antagonism

- ✓ competitive x non-competitive
- \checkmark reversible x irreversible
- \checkmark on the receptor level x on the level of function

Spectrum of ligands

at the function level

Antagonism

Competitive

- ✓ ligands compete for the same binding site
- ✓ ↑ c of antagonist decreases agonist effect and inversely
- ✓ the presence of antagonist incerases the amounts of agonist needed to evoke the effect

Non-competitive

- ✓ allosteric antagonism
- \checkmark irreverzible bounds
- ✓ ↑ c of agonist does not interrupt the effect of antagonist

Antagonism

Chemical

✓ drug inactivation by forming complexes with other molecules (protamine + heparin)

Physiologic

 drug intereaction on the level of function, drugs evoking opposite effects by different mechanism (diuretics + vassopresin, nitrates + α1 agonists)

Regulation of receptor function

Regulation of receptor sensitivity and counts

Hypersensitivity

✓ incerase of receptor sensitivity/counts after chronic
anatagonist exposure

Rebound phenomenom

after discontinuation of long-term administered drugs return to its original state or \uparrow intensity of the original condition (hypersensitivity of receptors to endogenous ligands \rightarrow up-regulation)

Example: chronic administration of β blockers

Presynaptic modulation

- Release of the primary neurotransmitter from the nerve endings is modified by:
- a) autoreceptors
- b) homoreceptors
- c) heteroreceptors

Regulation of receptor sensitivity and counts

Receptor desensitization

- reducing the sensitivity of the receptors after repeated agonist exposure
- <u>Tachyphylaxis</u> acute drug "tolerance"
 - reduced sensitivity to the active substance evolving quickly (minutes) \rightarrow distortion of the signal cascade
 - the reactivity of the organism returns to the original intensity after the elimination of the substance
 - Ex. of tachyphylaxis nitrates administration
- <u>Tolerance</u> reduced sensitivity to the active substance, arising from the repeated administration of the drug (days weeks) \rightarrow down-regulation, internalization of the receptors
 - to achieve the original effect required increasingly higher doses of drug
 - the original reactivity of the organism returns to a certain period of time after discontinuation of the drug
 - Ex. of tolerance opioids administration

Receptor classification

Localization 1		Fransduction		Ligands	
\checkmark	membrane	\checkmark	metabotropic	\checkmark	Achol
\checkmark	cytoplasm	\checkmark	ion. channels	\checkmark	amines
\checkmark	organels	\checkmark	kinase	\checkmark	AMA
\checkmark	auto/heterore	\checkmark	DNA	\checkmark	peptides
	ceptors		regulating		

Receptor classification

Localization 1		Fransduction		Ligands	
\checkmark	membrane	\checkmark	metabotropic	\checkmark	Achol
\checkmark	cytoplasm	\checkmark	ion. channels	\checkmark	amines
\checkmark	organels	\checkmark	kinase	\checkmark	AMA
\checkmark	auto/heterore	\checkmark	DNA	\checkmark	peptides
	ceptors		regulating		

Receptor classification

Non-receptor mechanisms of action

Based on phys.-chem. properties

- influencing pH
- oxidating and reducing agents
- protein precipitation
- creating protective layers
- adsorbentsa
- detergents
- chelating agents
- radionuclides

Non-receptor mechanisms of action

Interaction with "non-receptor" proteins

- enzyme inhibition
- nucleoside and nucleotide analogues (cytostatics, antivirotics)
- block of transporters
- block of ionic channels (Na⁺)
- binding to cellular components (ATB-ribosomes, mitotic spindle)