SYMPATHOTROPIC DRUGS

NEUROTRANSMITTER OF SYMPATHETIC NERVOUS SYSTEM

NORADRENALINE (NOREPINEPHRINE)

Substances affecting the sympathetic nervous system in the meaning of (

SYMPATHOMIMETICS (adrenergics, adrenomimetics) - DIRECT - SELECTIVE - INDIRECT - NONSELECTIVE

Substances affecting the sympathetic nervous system in the meaning of SYMPATHOLYTICS (antiadrenergics, blockers, adrenolytics) - SELECTIVE - DIRECT - NONSELECTIVE

- INDIRECT

Sympathomimetics (direct and indirect)

<u>Effects</u>

- vasoconstriction, mydriasis (α_1)
- ↓ BP (α₂)
- cardiostimulation (β_1)
- bronchodilatation, tocolysis, antialergic effect (β_2)
- psychostimulation
- \$\phi\$ appetite anorectic effect (nondirect mechanism of action)

Endogenous catecholamines and their <u>derivatives</u> Overview of drugs, use:

- adrenaline (epinephrine), noradrenaline (norepinephrine), dopamine, isoprenaline (obsol.)
- non-selective against adrenergic receptors

Use, indications:

- peripheral analeptics
- topical vasoconstriction
- cardiostimulation

Endogenous catecholamines

- <u>adrenaline (epinephrine)</u>
- a natural substance (hormone of the adrenal medulla, NT in the CNS, NT in the sympathetic system), stimulates α and β receptors
- higher affinity to $\underline{\beta}$ receptors, in low concentrations stimulates mainly β -receptors
- ineffective in oral administration
- metabolized like other catecholamines by MAO and COMT, final products – normetanephrine, acid vanilmandelic

Endogenous catecholamines

• <u>adrenaline (epinephrine)</u>

Effects:

- heart, blood vessels (vasoconstriction)
- changes of BP (according to the amount of dose lower doses β effect, higher doses β and α -effect, high doses α effect)
- bronchodilatation
- mast cells inhibition of release of the allergic reaction mediators (histamine)
- hyperglycemia glycogenolysis, glucagone secretion
- $\[mathchar]$ insulin secretion
- lipolysis

Direct sympathomimetics Endogenous catecholamines

<u>adrenaline (epinephrine)</u>

Use, indications:

 resuscitation during cardiac arrest, tonisation of myocard (1mg repeatedly in the 3 to 5min intervals – intravenously or intraosseously (= very rapid onset of action, intracardial application (very rarely))

- anaphylactic shock (1mg in 10ml saline sol.)
 - bronchodilatatory effect
 - the mucous membrane decongestion
 - positive inotropic
 - vasoconstriction in higher doses
 - blockade of mast cells degranulation

 • additive to local anaesthetic agents → by vasoconstriction prolongs anaesthesia, reduces toxicity of LA

• antiasthmatic agent: today usually replaced selective β_2 -mimetics (used in *status asthmaticus*)

Endogenous catecholamines

noradrenaline (norepinephrine)

- a natural substance (NT in CNS, NT of sympathetic system)
- stimulates $\underline{\alpha}$ and β receptors
- ineffective in oral administration
- <u>Effects:</u>
 - mainly on the cardiovascular system
 - increase of systolic (β effect) and diastolic BP (α effect)
 - reflexively by stimulation of n. vagus \rightarrow bradycardia

<u>Use, indications:</u>

- therapy of hypotension
- therapy of shocks (peripheral analeptics), today drug of the first choice in patients with failing blood circulation
- (vasoconstrictor additive to LA)

Direct sympathomimetics Endogenous catecholamines

- **dopamine** (today not common use)
- a natural substance (NT in CNS, in peripheria, precursor in NA synthesis)
- stimulates <u>dopaminergic receptors</u> (kidney and intestinal arterioles), β receptors, in higher doses α receptors
- effective only parenteral application
- Use, indications:
 - Therapy of shock

-stimulation of β_1 receptors = positive inotropic and chronotropic effect

-higher doses \rightarrow stimulation of α receptors = constriction of blood vessels (BP increase)

-stimulation of **D receptors** = vasodilatation in the area of splanchnic system and kidneys \rightarrow increased perfusion (different from noradrenaline! \rightarrow today renoprotective properties of dopamine are being called into question, respectively they are expressed only in high doses of dopamine)

Side effects of catecholamines

- low distribution across HEB → low CNS toxicity
- toxic peripheral effects result from increased from α or β receptor stimulation

Side effects (mainly on the cardiovascular system):

significant vasoconstriction → BP increase

•tachycardia

- heart arrhythmia
- increased demands of the myocardium for oxygen

Direct sympathomimetics $\underline{\alpha_1}$ sympathomimetics Overview of drugs, use:

- imida<u>zolines</u> naphazoline, oxymetazoline, xylometazoline, tetryzoline, tramazoline
- phenylephrine, midodrine
- methoxamine
- <u>Use:</u>
 - local vasoconstriction
 - system vasoconstriction (today not too frequent use)

- imida<u>zolines</u> naphazoline, oxymetazoline, xylometazoline, tetryzoline, tramazoline
- stimulation of α_1 receptors \rightarrow the mucous membrane decongestion

Use, indications:

- substances used primarily to decongest hyperemic mucous membranes (they are contained in the nasal and eye drops, sprays, gels, etc.)

- phenylephrine
- stimulation of α_1 receptors \rightarrow mydriasis, the mucous membrane decongestion (nasal, conjuctivas), BP increase

<u>Use, indication:</u>

- the mucous membrane decongestion
- to induce mydriasis (in conjunctivitis, uveitis, during cataract surgery)
- peripheral analeptics (in hypotensive conditions) obsol.

midodrine

- drug with prolonged effect (vasoconstrictor action possesses its metabolite)
- can be administered orally or parenterally

• <u>Use, indications:</u>

- hypotensive status
- incontinentia urinaria (stimulation of α₁ receptors in the area of urinary bladder sphincter → sphincter contraction)

• methoxamine (in Czech Rep. non registered)

stimulates α_1 receptors in blood vessels \rightarrow generalized vasoconstriction \rightarrow increase of BP = **PERIPHERAL ANALEPTICS**

Use, indications:

 therapy of hypotensive states (during spinal anaesthesia, therapy of shock; today, however, preferred NA)

Direct sympathomimetics <u>α₂ sympathomimetics</u> <u>Overview of drugs, use:</u>

clonidine, α-metyldopa

• Use, indications:

- for the treatment of hypertension (central and peripheral mechanism of action - α -metyldopa)

- rehab for addiction (clonidine – in Czech Rep. non registered)

- glaucoma (clonidine – in Czech Rep. non registered)

$\begin{array}{ll} \alpha - \mbox{ metyldopa} \rightarrow & \alpha - \mbox{ metyldopamin} \\ \rightarrow & \alpha - \mbox{ metylNA (= corbadrine)} \end{array}$

= false precursor \rightarrow NA depletion NA in vesicules

activation of presynaptic α_2 receptors \rightarrow inhibition of sympathetic system activity (+ ligand of I1 receptors) clonidine

Side effects:

•confusion, sedation, zmatenost, sedace, decrease of psychomotoric functions

- increase in body weight
- postural hypotension

 abrupt discontinuation of the treatment – hypertensive reaction = "rebound phenomenon"

Direct sympathomimetics <u>β₁ sympathomimetics</u> <u>Overview of drugs, use:</u>

- <u>dobutamine</u>
- ibopamine (dopamine derivative for oral administration; in Czech Rep. non registered)

<u>Use, indications:</u>

- heart failure, stimulation of conductive heart system
- cardiogenic shock (today combination NA + dobutamine preferred)
- severe forms of heart failure

Direct sympathomimetics β_1 selective sympathomimetics

- dobutamine
- <u>Use, effects:</u>
- syntetic substance similar to dopamine
- stimulation of β₁ receptors in heart → strong inotropic effect, relatively poor chronotropic effect
- oxygen consumption increases less than catecholamines
- t_{1/2} =2.5 min → should be administered in a continuous infusion
- indicated for cardiogenic shock in combination with NA

Overview of drugs, use:

 salbutamol, fenoterol, hexoprenaline, terbutaline, orciprenaline,...

• Use, indications:

- bronchodilatators (asthma bronchiale, status associated with obstruction of the respirátory tract (COPD))
- tocolytics

Effects:

- stimulation of β_2 receptors in bronchial smooth muscles of \rightarrow relaxation of smooth muscles and bronchodilatation
- inhibition of inflammation mediators (leucotriens) release and allergic reaction mediators (histamine) release from mast cells
- stimulation of mucociliar functions
- relaxation of the uterine muscles

<u>Use of β₂ sympatomimetics for bronchodilatation</u>

<u>Short-term effect</u> (4 – 6 h)

orciprenaline (less selective than others)

fenoterol, salbutamol, terbutaline, hexoprenaline...

Long-term effect (8 - 15 h)

clenbuterol, procaterol, formoterol, salmeterol

Routes of administration: orally, by inhalation, by injection

(intravenous infusion)

Side effects:

- tremor
- palpitation, nervousness
- ↓potassium (enhanced by theophyline and corticosteroids)

<u>Use of β₂ sympatomimetics in gynekology and</u> <u>obstetrics</u>

- **hexoprenaline** \rightarrow TOCOLYTICS \rightarrow
- \rightarrow relaxation of the uterine muscles
- prevention of pre-term birth or risk of abortion during premature uterine aktivity
- calming the uterus before, during and after the cerclage and in operations in the abdominal cavity
- calming the uterus at the time between the decision on the implementation of the sectio caesarea (see point 1)

- <u>mirabegron</u>
- agonism of β_3 receptors, relaxes the urinary bladder wall, increases the volume of urine during the storage phase of the micturition cycle
- orally registered in 2012
- Substrate of CYP2D6, PgP

Side effects:

• infection of urinary tract

MECHANISM OF ACTION

increase concentration of catecholamines in synaptic cleft by:

- releasing from the storage vesicles
- inhibition of neurotransmitter re-uptake presynaptically
- inhibition of catecholamine metabolism (inhib. MAO)
- increasing of neurotransmitter synthesis

Overview of drugs, use:

- amphetamine psychostimulants, substances related and other psychostimulants
- ephedrine, pseudoephedrine
- tyramine
- **MAO inhibitors** (MAOI)
- substances inhibiting re-uptake (TCA, cocaine)
- <u>Use:</u>
 - antidepressants
 - for ADHD treatment
 - for narcolepsia treatment
 - anorectics (antiobesics)
 - mucous membrane decongestion

MofA:

amphetamines possess wide scale of effects on **NA**, DA, 5-HT neurons:

t activity NT in brain

Effects on the sympathetic system - stimulation:

- ↑ HR
- ↑ BP
- ↑ body temperature
- mydriasis
- effects on CNS → psychostimulation

AFFECTING THE CNS

Acute effects

improvement in mood, sense of self-confidence, increased psychomotor activity (doping), dynamogenic effect (an increase in determination to take action), anorexic effect

Chronic effects

exogenous psychosis – halucinations, delirium, delusions, aggression, severe major depressive disorder with suicidal behaviour, paranoid states with anxiety symptomatology and agitation, insomnia, risk of "serotonin syndrome" development

$\uparrow \uparrow$ psychic addiction and tolerance

- amphetamine, methamphetamine
 MDMA (ecstasy)
- no medical use (in the past yes)
- among abused substances

Indirect sympathomimetics amphetamine psychostimulants and substances related and other psychostimulants

Indications

- modafinil narcolepsy
- methylphenidate ADHD
- phentermine supportive treatment in diet in patients with BMI > 30 obesity, in which reduction diet is not sufficient to reduce body weight
- atomoxetine ADHD
 - not among the classical stimulants → central SM
 → selectively inhibits NA re-uptake → ↑ NA concentration and indirectly ↑ DA in prefrontal cortex

Indirect sympathomimetics amphetamine psychostimulants and substances related and other psychostimulants

<u>SIDE EFFECTS – summary:</u>

- tachycardia
- ↑ BP
- sweating
- insomnia
- psychotic attacks
- depressive disorders
- anxiety, panic attacks
- serotonin syndrome
- drug addiction

Other indirect sympathomimetics

ephedrine

- indirect (+ direct) sympathomimetic effects
- slightly prevalent is β-sympathomimetic effect
- nasal mucosa decongestion (α-SM effect)
- risk of developing an addiction (psychostimulant)
- methamphetamine production
- obsol.

Other indirect sympathomimetics

• pseudoephedrine (ephedrine stereoisomer)

- lower risk of addiction in comparison with ephedrine
- abused for the production of methamphetamine
- among OTC with restrictions
- included in preparations for colds
- in combination with H1-antihistamine loratadine for decongestion

Other indirect sympathomimetics

tyramine

- metabolit of thyrosine
- product in the synthesis of catecholamines
- tyramine-containing foods \rightarrow dangerous in patients receiving MAOI \rightarrow risk of hypertension reaction