Factors influencing drug effects.

Overview of factors

A. Factors related to drug:

Physical and chemical properties
Dose
Drug form
Combination of drugs
Food administered together with a drug
Repeated administration
B. Factors related to organism:

Age
Gender
Weight and body constitution
Circadian rhytms
Pathological state of organism
Genotype/fenotype
(Race group/ethnic group)

A. Factors related to drug

I. Physical and chemical properties
II. Drug dose
III. Drug dosage form
IV. Drug combination with other drugs
V. Food administered together with a drug

I. Physical and chemical properties of drug

Influence on the transport trough membranes

- Chemical configuration
- Size and shape of the molecule
- Solubility in water and fats
- Acidobasic properties

Relationship of chemical structure to PK

ISDN is more lipophilic than ISMN ISDN may be administrated sublingually ISMN is almost not subject to the hepatic FPE Another example: atenolol x metoprolol

Stereoisomerism

- Cis-trans isomerism: only the cis form of chlorprothixene is efficient

II U II I

Drug information sources

- $\underline{\text { SPC }}=$ summarizing information about MP
(Summary of Product Characteristics)
part of the marketing authorisation of a
medicinal product
- AISLP - electronic drug information database for MP
- SÚKL MP database (State authority for control of drugs)
- Czech pharmacopoeia

II. Drug dose - dosis

- In preclinical trials
- In clinical trials phase I: MTD (maximal tolerated dose)

III. Drug dosage form

- definition: a substance or combination of substances
presented as having therapeutic or preventive
properties administered to set the medical diagnosis.

III. Drug dosage forms

$1^{\text {st }}$ generation - conventional DDF

$2^{\text {nd }}$ generation with controlled release
with prolongated release (SR,XR...)*
transdermal therapeutic system (TTS)
gastrointestinal therapeutic system
$3^{\text {rd }}$ generation with targeted drug delivery
*SR=sustained release, slow release
$L A=$ long acting, $S A=$ slow acting, $X R=$ extended release
$C R=$ continuous (controlled) release, retard atd.

Liposomal vers. conventional drug (e.g. amphotericin B)

Stealth liposomes = PEGylated (daunorubicin, doxorubicin)

Nano-liposomes

IV. Combinations of drugs

The effect is

Synergism

Summation: both drugs have the same (similar) effect and, if we combine them, the final effect is a sum of all effects, which the drugs would have when administered in monotherapy

```
one-sided : analgetics anodynes + narcotics
```

two-sided : combination of cytostatics

Potentiation

one-sided : $\mathrm{Ca}^{2+}+$ digoxin
two-sided : digoxin + thiazide diuretics

IV. Combinations of drugs

The effect is

Antagonism
pharmacological (ACH + atropin)
physiological (ACH + adrenalin)
chemical (heparin + protamin sulfate)
(metals + dimerkaprol, EDTA)

V. Food intake

PD interactions

- non-selective inhibitors of monoaminooxidase increase the bioavailability
of tyramine from food (fermented food is risky, e.g. some cheese, red wine, smoked meat, bananas) -> risk of excessive wash out of catecholamines and hypertensive crisis
- food with high content of vitamin K (e.g. broccoli) can decrease the effect of warfarin (vitamin K antagonist)

PK interactions

- more often- influence at the level of absorption, but also

V. Pharmacokinetic interactions with food

Food can:
slow down drug absorption without changing its
bioavailability
(inappropriate in analgetics, hypnotics...)
decrease bioavailability
increase bioavailability

B. Factors related to organism

Age
Gender
Weight and body constitution
Circadian rhythms
Pathological conditions of organism Genotype/phenotype

Age

Administration of medicinal product (MP)

to children
to elderly people

Administration of MP to children

approximate dose for children
=
body surface area $\left(\mathrm{m}^{2}\right) \mathrm{x}$ dose for adult
$1,7\left(\mathrm{~m}^{2}\right)$

Administration of MP to children

A child is not a miniature of an adult
particularities of PD
particularities of PK

Particularities of PK of drugs in child

Particularly on newborns (especially premature):

relatively bigger volume of extracellular liquor
lower binding on plasma proteins
unfinished development of hematoencephalic barrier
immaturity of enzymatic systems
Immaturity of renal functions

Administration of MP to old people

$60-74$	older person
$75-89$	elderly
>90	longevity

physiological changes
multimorbidity
polypragmasia (administration of many drugs together, risk of drug interactions is increasing)
higher incidence and severity of adverse effects

Changes of PK of drugs in old age

absorption (passive diffusion of subacid substances
thanks to hypoacidity, active transport is decreasing)
binding on plasma proteins
elimination: decrease of blood flow through kidneys
and GFR, flow through liver and activity of redox
enzymes
=> Prolongation of $t_{1 / 2}$
(e.g. digoxin, aminoglycoside atb)

Changes of PD in old age

Very variable

Tissue hypoxia
Dysfunction of regulatory mechanisms
Change of sensibility of target structures
= hyperergic reaction

Changes of PD in old age

Examples:

ATB aminoglycosides:
lower doses in case of lower GF (correction according to CLCR)

Antihypertensives: orthostatic hypotension, psychical alternations (confusion)

Anticoagulants: bleeding from GIT (decreased absorption of vitamin K and decreased synthesis of prothrombin)

NSAID: in 25\% hematemesis

Gender

Women are in general more sensitive to effects of some drugs, e.g. because of lower weight, but also of lower CL (olanzapine)

Specific periods are:
menstruation
gravidity
lactation
menopause

Pregnancy

slowed stomach and intestinal motility
increased volume of plasma, body water can be raised up to 8 litres more
hypoalbuminemia, occupancy rate of plasma proteins by hormones
increased blood flow through kidneys and increase of GFR

Weight and body constitution

In many cases drugs are dosed in consideration to the weight of the patient (it's recommended to use dosing per 1 kg of body weight, respecting the patient's age)

Dosage mode: dose per time period
Dose: $\mathrm{mg} / \mathrm{kg}, \mathrm{mg} / \mathrm{kg} / \mathrm{age}, \mathrm{mg} / \mathrm{m}^{2}$

Pathological state of organism

Influence of lesion/renal dysfunction, liver and thyroid gland on
pharmacokinetics

Influence of pathological state on pharmacodynamics

Hypofunction of kidneys

The most common reason for a drug dose adjustment

Customisations of dosage in accordance to the tables - GFR is a clue

For the majority of drugs, the customisation of the dosage means prolongation of intervals (AMG, vancomycin)

In drugs with very long $t_{1 / 2}$ we keep the same interval, but administer a lower dose (digoxin)

Influence of liver diseases

No reliable quantitative criteria is available for measuring impaired liver elimination capacity (analogy $\mathrm{CL}_{\mathrm{cr}}$ in kidney dysfunctions)
$\longrightarrow \quad$ empirical attitude

Liver function tests (aminotransferases, albumin, blood coagulation factors) are not a good clue for the dosage of drugs

In persons with liver diseases

Prefer drugs eliminated mostly by kidneys, if possible (or those whose kinetics is not disturbed by liver hypofunction) e.g. atenolol

Prefer drugs acting directly - without activation of biotransformations in liver (lisinopril x enalapril)

Think about the possibility of increased biol. availability when drugs with high first-pass effect are administered orally (e.g. metoprolol)

Genetic factors

The drug response varies among individuals qualitatively and quantitatively
interindividual variability - polymorphism

Genetic factors influence PD and also PK

Genetic factors

Genetic polymorphism = existence of several (at least two) alleles for a concrete gene, the least frequent one of which has the population frequency at least 1%

Pharmacogenetics

focused on studies of genetically conditioned variability in response of the organism to a drug
(Pharmacogenomics investigates the relationship of drug effect at the level of the whole genome)

Adverse effects

II U II I
MED

Adverse effects

AE frequency - SPC

very common (with occurrence frequency $\geq 10 \%$)

$$
\begin{aligned}
& \text { common (1 \%-10 \%) } \\
& \text { uncommon (0.1 \%-1 \%) } \\
& \text { rare (0.01 \%- 0.1 \%) } \\
& \text { very rare (< 0,01 \%) }
\end{aligned}
$$

$\begin{gathered}\text { Type A }-95 \% \\ \text { dose dependent }\end{gathered}$
pharmaceutical, pharmacokinetic

Type B-5\% dose non-dependent immunological reactions, pseudoallergic reactions, pharmacogenetic variations

Type C
during longer application
Type D
delayed reactions

> Type E
> after withdrawal

Adverse effects - type A

pharmaceutical reasons:
unsatisfactory clean preparations - admixtures of pyrogens, bacteria, etc.
expired preparations

Adverse effects - type A

pharmacokinetic variant

liver diseases (hepatitis, cirrhosis) - lower production of blood albumines during cirrhosis
kidney disease (accumulation of medical substances eliminated by glomerular filtration or tubular secretion)
heart diseases (decreased blood flow in liver and kidneys, impaired absorption from GIT absorption from GIT due to lower blood flow and gut mucous membrane oedema)

Adverse effects - type A

thyroid gland disorders - changed metabolization during hyperthyreosis or hypothyreosis
interactions of medical substances

Adverse effects - type B

immunological

- hypersensitivity (allergies)
pseudoallergic reactions
- clinical symptoms are like in hypersensitivity, but there are no immunological markers
reaction to the same drug will not necessary develop after the next administration

Adverse effects - type C (after longer administration)

tolerance
dependence
specific for various substances
corticosteroids - adrenal cortex atrophy
phenacetin - kidney inflammation

Adverse effects - type D (delayed)

carcinogenic
hormonal interventions during pregnancy
genetic toxicity
cyklophosphamide \rightarrow ca of gall-bladder
immunosuppression
immunosuppressive substances \rightarrow ca of
liver, biliary tract

Adverse effects - type D (delayed)

interfere with reproduction
decrease in fertility
teratogenic effects
cumulation in breast milk

Adverse effects - type E

„rebound" phenomenon -
deterioration of the original difficulties after stopping of administration
anxiolytic drugs \rightarrow anxiety antihypertensive drugs \rightarrow hypertension
withdrawal syndrome in addictive substances

