

PHARMACODYNAMICS

Pharmacology Lecture

PHARMACOLOGY

deals with the mechanism of action (e.g. receptor sites, molecular level of action..)

"How does it work"

Pharmacokinetics

Pharmacodynamics (how drugs work on the body)

- The <u>action of a drug on the body</u>, including receptor interactions, dose-response phenomena, and mechanisms of therapeutic and toxic action
- Main targets cellular, molecular, genetic level...
 - Therapeutic effects
 - Adverse effects

History of the Pharmacology

Founders of specific drug effects - physiologist Newport Langley (1852–1925) and immunologist Paul Ehrlich (1854 – 1915).

- 1905 John Newport Langley pharmacology of vegetative nervous system and hormonal regulations (nicotin as receptive substance)
- 1906 Paul Ehrlich salvarsan selective binding to the "chemoreceptros"

MUNI Med

I. Non-specific drug effects

...through by the general physical-chemical properties of

substances - no specific chemical and structural

configuration of drugs is needed

- influencing pH
- oxidating and reducing agents
- protein precipitation
- adsorbents / detergents
- chelating agents

a. based on osmotic properties -

- e.g. salinic laxatives (magnesium sulphate, lactulosa)
- osmotic diuretics (mannitol)

Low Sugar Concentration High Sugar Concentration High Water Concentration Low Water Concentration

b. influencing acid-base balance

Antacids

- aluminium hydroxide
- magnesium carbonate
- calcium carbonate
- sodium bicarbonate
- pH modifiers (blood, urine)
 - Sodium bicarbonate, ammonium chloride

c. based on oxido – reducing properties

- e.g. 3% hydrogen peroxide, boric acid, fenols
- chlorhexidine act as antiseptics

d. chelates (chelating agents)

- ethylenediaminetetraacetic acid (EDTA) is a chelating agent,
 it can form bonds with a metal ion
- dexrazoxane a cyclic analog of EDTA administered with anthracyclines to prevent cardiotoxicity \rightarrow Fe2 + ions)

II. Specific drug effects

effect depends on the specific molecules configuration

most drugs act (bind) on receptors

in or on cells

- form tight bonds with the ligand
- exacting requirements (size, shape, stereospecificity)

MUNI MED

Specific drug effects

many drugs inhibit enzymes

– A very common mode of action of many drugs

in the patient (ACE inhibitors)

- in microbes (sulfas, penicillins)
- in cancer cells (5-FU, 6-MP)
- Some drugs bind to:
 - proteins (in patient, or microbes)
 - DNA (cyclophosphamide)
 - microtubules (vincristine)

MUNI Med

Rang and Dale Pharmacology, 2017

A. Receptor – effector system

= complex of processes

extracelullar signal -----> intracell. signal cascade-----> effector (own effect)

receptor = protein, which interacts ligands

- involved in signal transduction
- effector = enzyme, ionic channel etc. change in the activity leads to the effect of drug
- Iigand (signal molecule) = molecule able to bind to specific receptor
 - endogenous neurotransmitters, hormones
 - exogenous xenobiotics, drugs

NUNIReceptor classificationMED

Localization	Transduction	Ligands
✓ membrane	✓ metabotropic	✓ Achol
✓ cytoplasm	✓ ion. channels	✓ amines
✓ organels	✓ kinase	✓ AMA
✓ auto/heterore	e ✓ DNA	✓ peptides
ceptors	regulating	

Receptor classification

	Type 1 Receptors connected with ion channels	Type 2 G-protein coupled receptor	Type 3 Receptor tyrosin kinases	Type 4 Intracellular (nuclear) receptors
Place	Membrane	Membrane	Membrane	Intracellular
Efector	lon channel	Channel or enzyme	Enzyme	Gene transcription
Binding	direct	G-protein	direct	DNA mediated
Examples	Nicotin-cholinergic receptor, GABA receptor	Muscarin-cholinergic adrenoreceptors	Inzulin, growth factor, cytokin receptor	Steroids, thyroid hormon receptors
Structure	Oligomer composed by subunits surrounding center of the channel	Monomer (or dimer) containing 7 transmembrane helical domains.	Single transmembrane helical domain interconencted with extracelular kinase	Monomer structure with separate receptor and DNA binding domain

	Type 1 Receptors connected with ion channels	Type 2 G-protein coupled receptor	Type 3 Receptor tyrosin kinases	Type 4 Intracellular (nuclear) receptors
Place	Membrane	Membrane	Membrane	Intracellular
Efector	lon channel	Channel or enzyme	Enzyme	Gene transcription
Binding	direct	G-protein	direct	DNA mediated
Examples	Nicotin-cholinergic receptor, GABA receptor	Muscarin-cholinergic adrenoreceptors Opioid receptors	Inzulin, growth factor, cytokin receptor	Steroids, thyroid hormon receptors
Structure	Oligomer composed by subunits surrounding center of the channel	Monomer (or dimer) containing 7 transmembrane helical domains.	Single transmembrane helical domain interconencted with extracelular kinase	Monomer structure with separate receptor and DNA binding domain

Rang and Dale Pharmacology, 2012

	Туре 1	Туре 2	Туре 3	Туре 4
	Receptors connected with ion channels	G-protein coupled receptor	Receptor tyrosin kinases	Intracellular (nuclear) receptors
Place	Membrane	Membrane	Membrane	Intracellular
Efector	lon channel	Channel or enzyme	Enzyme	Gene transcription
Binding	direct	G-protein	direct	DNA mediated
Examples	Nicotin-cholinergic receptor, GABA receptor	Muscarin-cholinergic adrenoreceptors	Inzulin, growth factor, cytokin receptor	Steroids, thyroid hormon receptors
Structure	Oligomer composed by subunits surrounding center of the channel	Monomer (or dimer) containing 7 transmembrane helical domains.	Single transmembrane helical domain interconencted with extracelular kinase	Monomer structure with separate receptor and DNA binding domain

Receptor Tyrosin Kinases (RTK)

- RTKs mediate signaling by insulin and a variety of growth factors such as EGF, VEGF, PDGF..
- Importance in the regulation of oncogenes and cell growth
- Exists on the cell surface as monomers with the single transmembrane domain
- When activated, the receptors dimerize and transfer phosphate to hydroxyl groups on tyrosines of target proteins
- Time to response : minutes to hours

	Type 1 Receptors connected with ion channels	Type 2 G-protein coupled receptor	Type 3 Receptor tyrosin kinases	Type 4 Intracellular (nuclear) receptors
Place	Membrane	Membrane	Membrane	Intracellular
Efector	lon channel	Channel or enzyme	Enzyme	Gene transcription
Binding	direct	G-protein	direct	DNA mediated
Examples	Nicotin-cholinergic receptor, GABA receptor	Muscarin-cholinergic adrenoreceptors	Inzulin, growth factor, cytokin receptor	Steroids, thyroid hormon receptors, vitamins
Structure	Oligomer composed by subunits surrounding center of the channel	Monomer (or dimer) containing 7 transmembrane helical domains.	Single transmembrane helical domain interconencted with extracelular kinase	Monomer structure with separate receptor and DNA binding domain

Receptor – effector system

– Affinity

✓ the ability of the ligand to bind to the receptor

– Instrinsic activity

- ✓ ability to evoke an effect after binding to receptor
 - !!!the presence of sufficient number of receptor for the induction of pharmacological effect is essential as well as sufficient amounts of receptor ligand!!!

Ligand classification (intrinsic activity) AGONISTS

Full agonist

- IA = 1

Partial agonist

- dualist
- IA in a range from 0< to >1

Ligand classification

Antagonists

- ✓ IA = 0
- ✓ Blocks agonist binding to receptor

Inverse agonist

✓ IA = -1

✓ Stabilizesthe receptor in the constitutive activity

INDIReceptor-effector systemMED

Relation between dose and effect

Spectrum of ligands

at the function level

Antagonism

Competitive

- ligands compete for the same binding site
- \checkmark \uparrow c of antagonist decreases agonist effect and inversely
- ✓ the presence of antagonist incerases the amounts of agonist needed to evoke the effect

Non-competitive

- ✓ allosteric antagonism
- ✓ irreverzible bounds
- \checkmark \uparrow c of agonist does not interrupt the effect of antagonist

Regulation of receptor function

Regulation of receptor sensitivity and counts

Receptor desensitization

- reducing the sensitivity of the receptors after repeated agonist exposure
- <u>Tachyphylaxis</u> acute drug "tolerance"
 - reduced sensitivity to the active substance evolving quickly (minutes) \rightarrow distortion of the signal cascade
 - the reactivity of the organism returns to the original intensity after the elimination of the substance
 - Ex. of tachyphylaxis nitrates administration, ephedrine
- <u>Tolerance</u> reduced sensitivity to the active substance, arising from the repeated administration of the drug (days – weeks) → down-regulation, internalization of the receptors
 - to achieve the original effect required increasingly higher doses of drug
 - the original reactivity of the organism returns to a certain period of time after discontinuation of the drug
 - Ex. of tolerance opioids administration

Regulation of receptor sensitivity and counts

Hypersensitivity

✓ incerase of receptor sensitivity/counts after chronic
 anatagonist exposure

Rebound phenomenom

after discontinuation of long-term administered drugs return to its original state or \uparrow intensity of the original condition (hypersensitivity of receptors to endogenous ligands \rightarrow upregulation)

Example: chronic administration of β blockers

B. Non-receptor mechanism of action

Interaction with "non-receptor" proteins

- 1. enzyme inhibition
- 2. block of ion channels
- 3. block of transporters

"non-proteins"

 binding to cellular components (ATB-ribosomes, hydroxyapatit, tubulin etc.)

1. Enzyme inhibition

Competitive or non-competitive enzyme inhibitors

- reversible
 - acetylcholinesteraze physostigmine
 - phosphodiesteraze methylxantine
- •irreversible:
 - Cyklooxygenaze ASA (aspirin)
 - MAO-B selegilin
 - aldehyddehydrogenaze- disulfiram

2. Ion channels

- Calcium channel blockers (nifedipin, isradipin...)
- Potassium channel blockers (flupirtin selective neuronal potassium channel modulator, oral antidiabetics...)
- Natrium channel blockers local anesthetics

3. "Carriers"

- Proton pump inhibitors (PPIs) omeprazol
- Na⁺/K⁺ ATPasa inhibitors digoxin

MUNI

MED

29.10.2019 - Adverse effects, pharmacovigilance

Thank you for your attention

MUNI MED