

Drug Interactions

1 Pharmacology – Drug interactions/Department of Pharmacology

Agenda

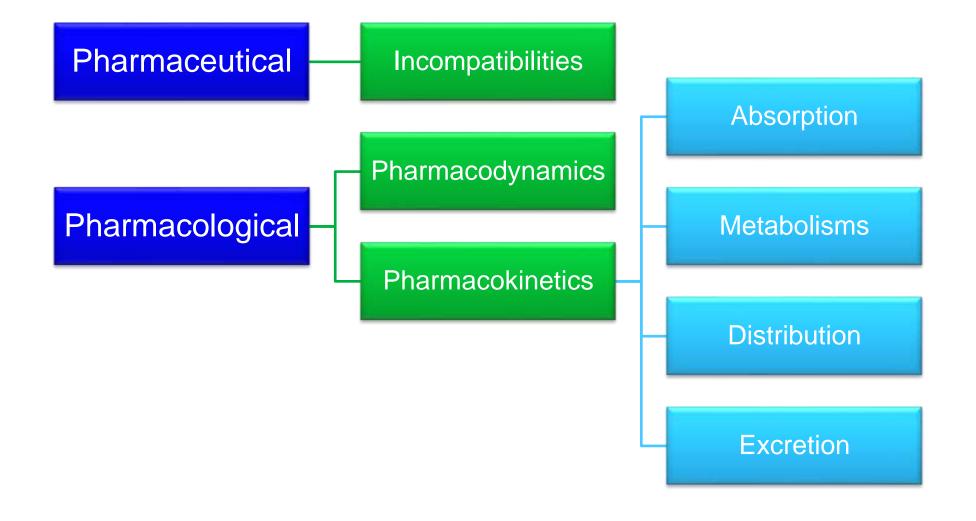
Drug interactions (DDI)

- Definition
- Significance

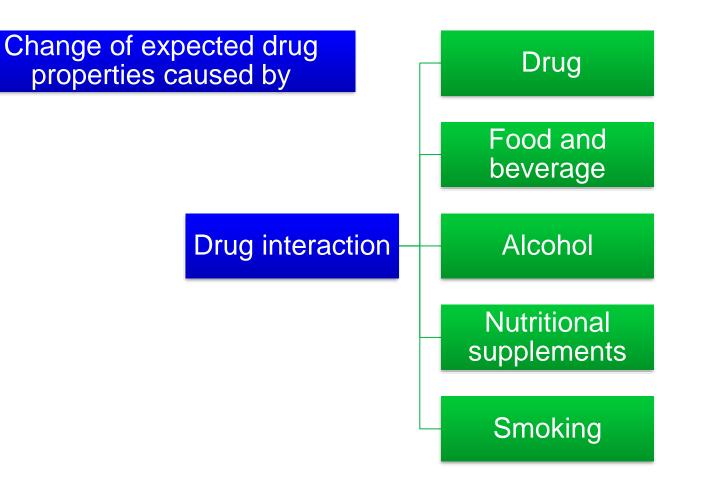
Pharmacokinetic DI - examples Pharmacodynamic DI - examples Pharmaceutical DI - examples Drug interactions with food, beverages, herbs Drug interactions among smokers Recommendation Summary

Definitions and Terms

Drug Interactions:" The pharmacologic or clinical response to the administration of a drug combination different from that anticipated from the known effects of the two agents when given alone "


1Tatro DS (Ed.) Drug Interaction Facts. J.B. Lippincott Co. St. Louis 1992.

Negative? Positive ? Clinically relevant!


Drug Interaction Classification

- Interrelationship 2 or more drugs at the level of:
 - Pharmaceuticals physico-chemical and chemical interactions of the components
 - Pharmacokinetics Involves absorption, distribution, metabolism and excretion, all of them being associated with both treatment failure or toxicity
 - Pharmacodynamics interaction of active ingredients at the level
 - direct effect at receptor function,
 - interference with a biological or physiological control process and
 - additive/opposed pharmacological effect..

Drug interactions - classification

Drug interactions - classification

Classifying drug interactions

Grade	Relevance	
1 – A	Nonrelevant	
2 – B	Minor	
3 – C	Moderate	
4 – D	Major	
5 – X	Contraindicated (?)	

Significance of drug interactions

Desirable (beneficial for the patient)

drug combination potentiating drug effect and decreasing the toxicity

combination of:

cytostatics analgesics antihypertensives ATBs drugs for asthma

Significance of drug interactions

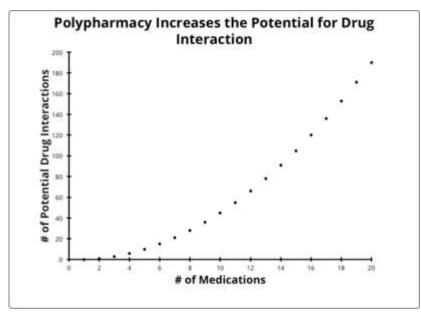
Desirable (beneficial for the patient)

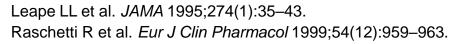
- combination of the active substance suppressing/inhibiting the effect of another drug
- in the treatment of intoxication/poisoning organism

toxic substance	Antidote	
amanita phalloides	Silibin, N-acetylcystein	
opiates	naloxon	
atropine	fysostigmin	
benzodiazepines	flumazenil	
digitalis	antidigitalisová globulin	
glycoles	<u>ethanol, fomepizol</u>	
carbamates	atropine	
kumarini	<u>vitamin K</u>	
cyanides	amylium nitrosum, hydroxycobalamin,	
aniline	methylene blue	
lead	<u>EDTA, DMSA</u>	
organophosphate	atropine, oximy	
paracetamol	N-acetylcystein	

Significance of drug interactions

Undesirable (for the patient harmful, potentially dangerous) Major - life threatening Moderate - clinically significant Minor


This may result in:


increase or decrease (loss) effect increasing or reducing the incidence of side effects other changes in effect injury or even death

clinically insignificant

Why are the drug interactions so important?

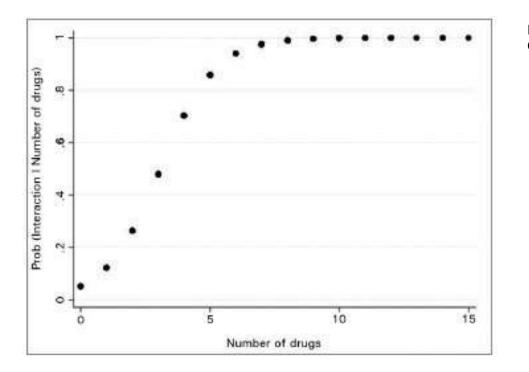
- are one of the commonest causes of ADRs
- particularly in the elderly due to polypharmacy
- with a prevalence of 20-40% in population
- 75 % are preventable
- ADR are 4th most frequent cause of death

Original article

Twelve-Month Frequency of Drug-Metabolizing Enzyme and Transporter-Based Drug-Drug Interaction Potential in Patients Receiving Oral Enzyme-Targeted Kinase Inhibitor Antineoplastic Agents

Steven J. Bowlin, DO, MPH, PhD . Fang Xia, PhD, Wenyi Wang, MS, Keisha D. Robinson, MBA, MPM, Eric J. Stanek, PharmD

DDI risk factors


- Poly pharmacy
- Multiple prescribers
- Multiple pharmacies
- Genetic

- Specific population like elderly, obese, critically ill patient
- Specific illness e.g. Hepatic disease,
 - Renal dysfunction...
- Narrow therapeutic index drugs

Digoxin, Warfarin, Insulin, Antidepressant, Lithium

The risk of polypharmacy

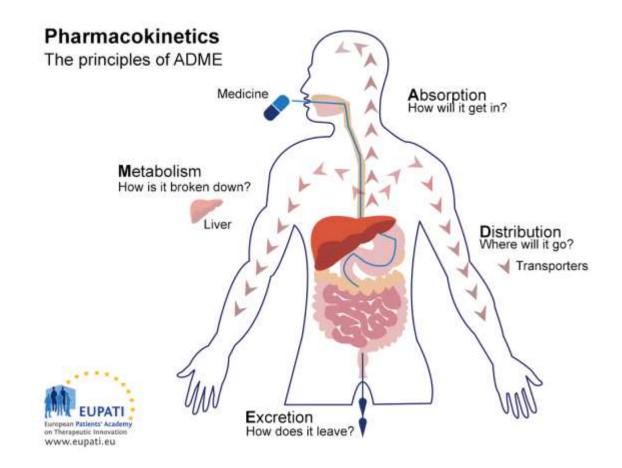
prescribing cascade - which occurs when an ADR is misunderstood and new potentially unnecessary drugs are administered; therefore the patient is at risk to develop further ADRs

May F.E., Stewart R.B., Cluff L.E.: Drug interactions and multiple drug administration. Clin.Pharmac.Ther. 1977, 22:322

ARTICLE

Potential Drug Interactions and Duplicate Prescriptions Among Cancer Patients

Rachel P. Riechelmann, Ian F. Tannock, Lisa Wang, Everardo D. Saad, Nathan A. Taback, Monika K. Krzyzanowska


J Natl Cancer Inst 2007;99:592-600

Consequences of drug interactions

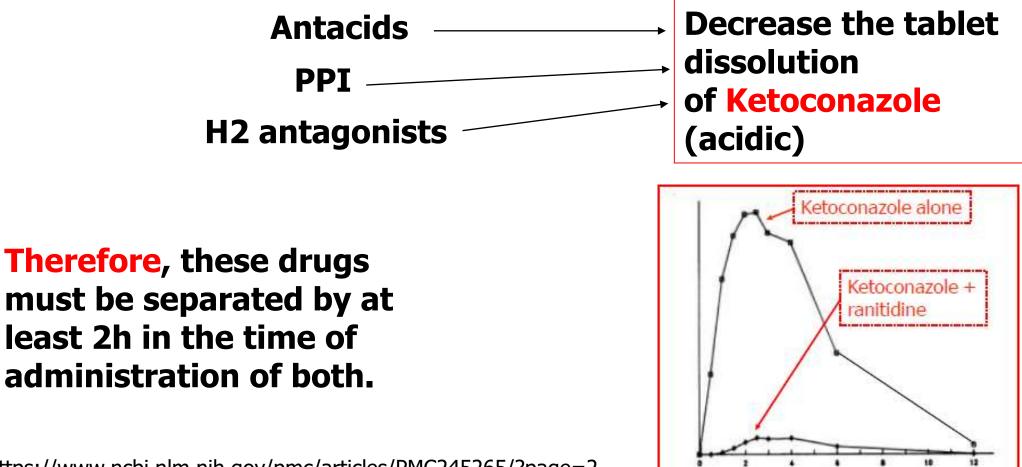
- 1. Loss of therapeutic effect
- 2. Toxicity
- 3. Unexpected increase in pharmacological activity
- 4. Beneficial effects e.g additive & potentiation (intended) or antagonism (unintended).
- 5. Chemical or physical interaction e.g I.V incompatibility in fluid or syringes mixture

Pharmacokinetics drug interactions

Pharmacokinetics drug interactions

Pharmacokinetics drug interactions

 are often considered on the basis of knowledge of each drug and are identified by controlling the patient's clinical manifestations as well as the changes in serum drug concentrations.

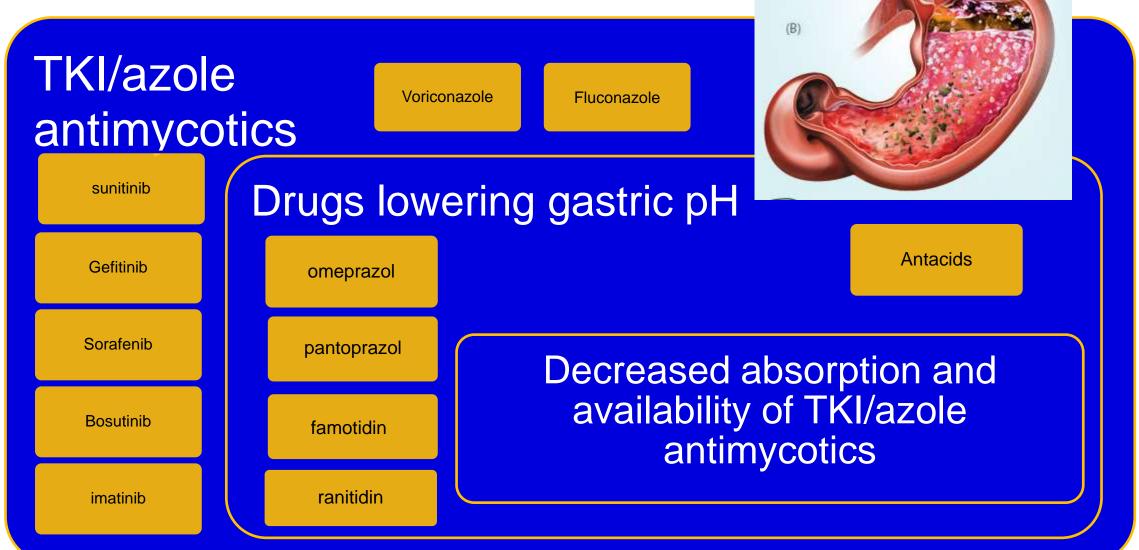

They involved all the processes from absorption up to excretion.

Pharmacokinetic interactions - Absorption

- altered pH
- altered bacterial flora
- formation of drug chelates or complexes
- drug induced mucosal damage
- altered GIT motility

Altered pH

The non-ionized form of a drug is more lipid soluble and more readily absorbed from GIT than the ionized form does.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC245265/?page=2

They Can Occur in the GI Tract

- Sucralfate, some milk products, antacids, and oral iron preparations
- Omeprazole, lansoprazole, H2-antagonists
- Didanosine (given as a buffered tablet)
- Cholestyramine

- Block absorption of quinolones, tetracycline, and azithromycin
- Reduce absorption of ketoconazole, delavirdine
- Reduces ketoconazole absorption
- Binds raloxifene, thyroid hormone, and digoxin

Tyrosinkinase inhibitors/azole antimycotics And drugs lowering gastric pH

Altered intestinal bacterial flora

- 40% or more of the administered digoxin dose is metabolised by the intestinal flora.
- Antibiotics kill a large number of the normal flora of the intestine

Increase digoxin conc. and increase its toxicity

Complexation or chelation

Antacid (aluminum or magnesium) hydroxide

Decrease absorption of ciprofloxacin by 85% due to chelation

carbo medicinalis (coal), diosmectin – readsorption of other drugs

Drug-induced mucosal damage

Antineoplastic agents cyclophosphamide, vincristine, procarbazine

> Inhibit absorption of several drugs eg., digoxin

Altered motility

Increased motility

- Diarrhea reduce absorption
- Prokinetic drugs metoclopramide, domperidone, itopride

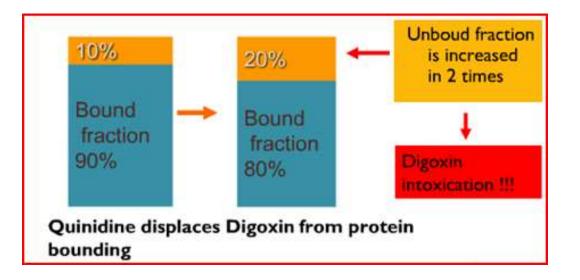
Decreased motility

- Ileus, constipation increase in AUC of drugs, toxicity
- Opioids, diphenoxylate, loperamide

Pharmacokinetic interactions - Distribution

- The major plasma proteins to which most drugs bind are albumin and a1-acid glycoprotein; the former typically binds acidic, anionic drugs whereas the latter typically favors basic drugs
- Competitive protein binding by another drug will result in increase concentration of free drug, and that will yield more drug response

Maximum Fraction Bound in Plasma (ß _{max})	Fraction of Total Drug Bound in the Body	Maximum Possible Increase in Pharmacodynamic Effect Due to Complete Binding Displacement
50%	10%	10%
90%	49.6%	\sim two-fold
99%	91.5%	~ 12 -fold

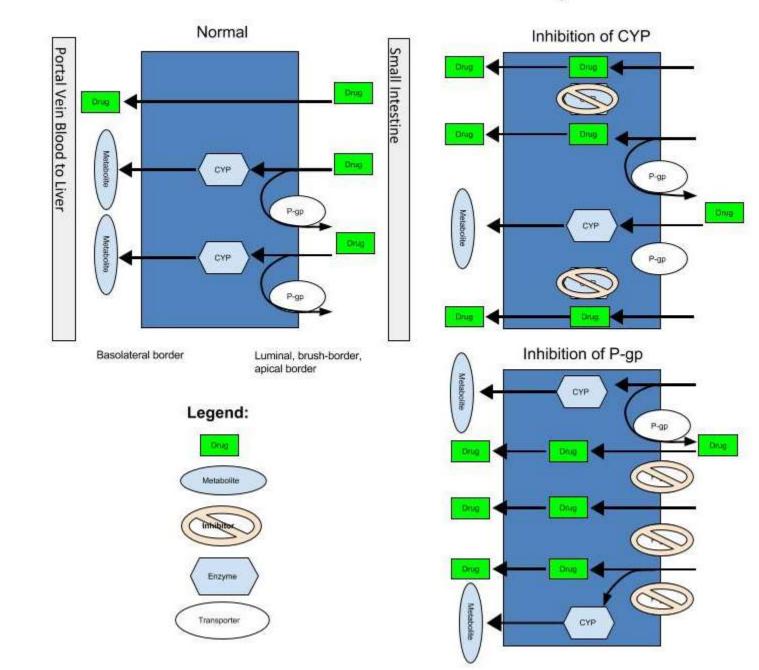

Displaced protein binding

- It depends on the affinity of the drug to plasma protein. The most likely bound drugs is capable to displace others.
- It is clinically important if displaced drug is highly PP binding, with LONG T ¹/₂, small Vd, narrow therapeutic range.
- The free drug is increased by displacement by another drug with higher affinity.

Aspirin, Phenylbutazone, Clofibrate

Displace:

- Oral Anti-coagulants (Dicumarol, Warfarin)
 - Bleeding
- Oral Hypoglycemics (Tolbutamide)
 - Hypoglycemia
- Bilirubin in Neonate
 - Jaundice & Kernictrus.
- Phenytoin


Drugs binding to protein

Drugs EXTENSIVELY bound (>90%)	Drugs BARELY bound (<10%)		
Oral anticoagulants: warfarin Oral antidiab.: glimepiride, glipizide, glyburide Lipid lower. drugs: gemfibrozil, statins NSAID: indomethacine, phenylbutazone ibuprofen, naproxen, diflunisal, diclophenac Loop diuretics, e.g. furosemide Antihypertensives: diazoxide, losartan Cardiovasc: amiodarone, prazosin, felodipine, nicardipine, digitoxin, ticlopidine Antiinfectives: ceftriaxone, nalidixic acid, ketoconazole, itraconazole, suramin, nelfinavir Benzodiazepines: diazepam, midazolam Others: montelukast, zafirlukast, entacapone leflunomide	aminoglycosides, e.g. gentamycin flucytosine, fluconazole isoniazid ifosfamide metformin codeine metoprolol, tocainide ouabain (strophantin) lisinopril lithium ethanol		

Drugs with INTERMEDIATE binding – examples:

phenytoin (89%), carbamazepine (74%), phenobarbital (60%), theophylline (60%), hydrochlorothiazide (58%), aspirin (50%), paracetamol = acetaminophen (20%)

Illustration 1: Intestinal Enterocytes

Selected P-Glycoprotein Substrates^{20,22-24,59}

Anticancer agents

- Doxorubicin
- Docetaxel^a ۰.
- Vincristine⁴
- Vinblastine
- Etoposide"
- Actinomycin D

Steroid hormones

- Aldosterone
- Cortisol^a
- Dexamethasone⁴
- Methylprednisolone ٠

Antimicrobial agents

- Erythromycin^a
- Ketoconazole
- Itracon az ole4
- Tetracycline
- Doxycycline
- Levofloxacin
- Sparfloxacin

"Substrate of CYP3A.

Opioids

- Loperamide
- Morphine

Cardiac drugs

- Digoxin
- Diltiazem^a
- Verapamil^a
- Talinolol

Immunosuppres sants

- Cyclosporine^a
- Tacrolimus*

Miscellaneous

- Ivermectin and other avermectins
- Amitriptyline
- Terfenadine⁴
- Ondan setron
- Domperidon
- Acepromazine
- Vecuronium

Selected P-Glycoprotein Inhibitors^{19,22,25,35,64,61}

Antidepressants

- Fluovetine
- Saint John's Wort
- Paroxetine ۰.

Antimicrobials

- Erythromycinab ٠
- Itracon az oleª ٠
- Ketoconazole* ж.

Opioids

- Methadone
- Pentazocine

Cardiac drugs

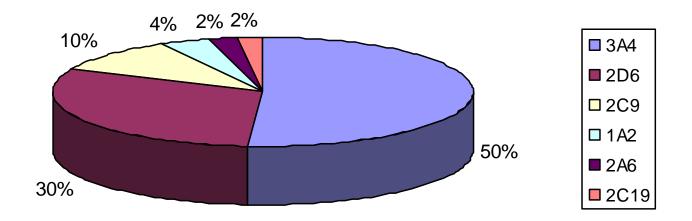
- Verapamil^a
- Amiodarone⁴
- Carvedilol
- Quinidine⁴
- Nicardipine⁴

Immunosuppres sants

- Cyclosporine^a
- Tacrolimus^a

Miscellaneous

- Bromocriptine
- Chlorpromazine
- Tamoxifen^a
- Grapefruit juice^b


"CYP3A substrate. ^bCYP3A inhibitor.

 $M \vdash D$

Butorphanol

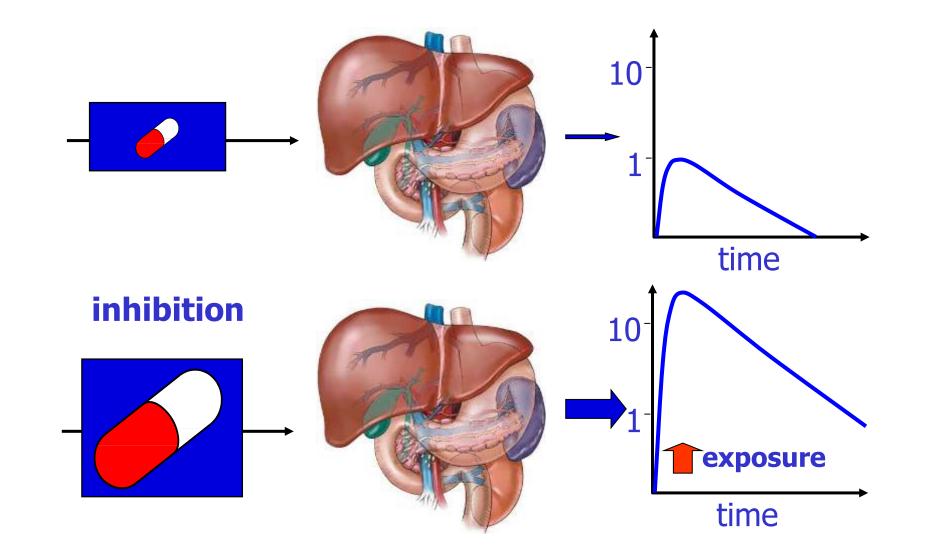
Pharmacokinetic interactions - Metabolism

The effect of one drug on the metabolism of the other is well documented. The liver is the major site of drug metabolism but other organs can also do e.g., WBC, skin, lung, and GIT. CYP450 family is the major metabolizing enzyme in phase I (oxidation process). Therefore, the effect of drugs on the rate of metabolism of others can involve the following examples

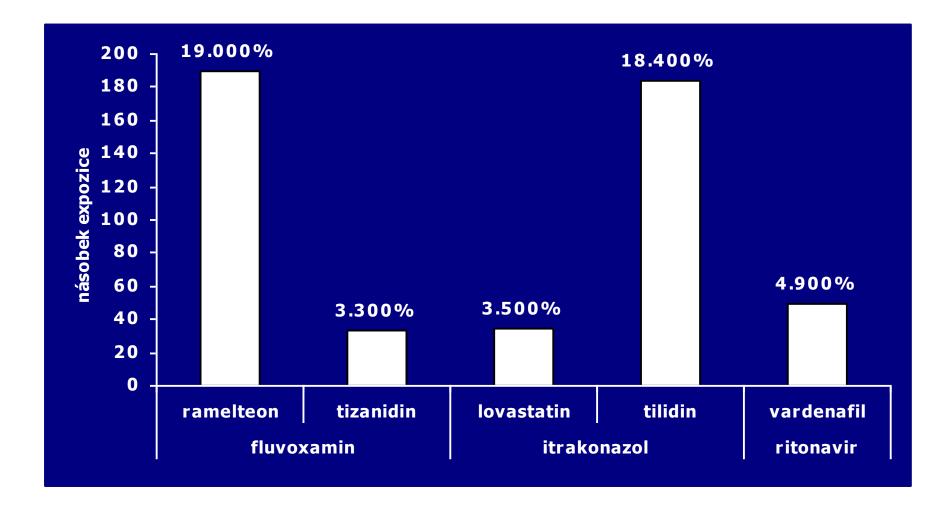
Polymorphism of enzymes

- slow metabolizer all defective alleles
- medium metabolizer an intact allele
- rapid metabolizer all intact allele (wild type)
- ultrarapid metabolizer multiplication of a gene or a higher enzyme activity

CYP P450

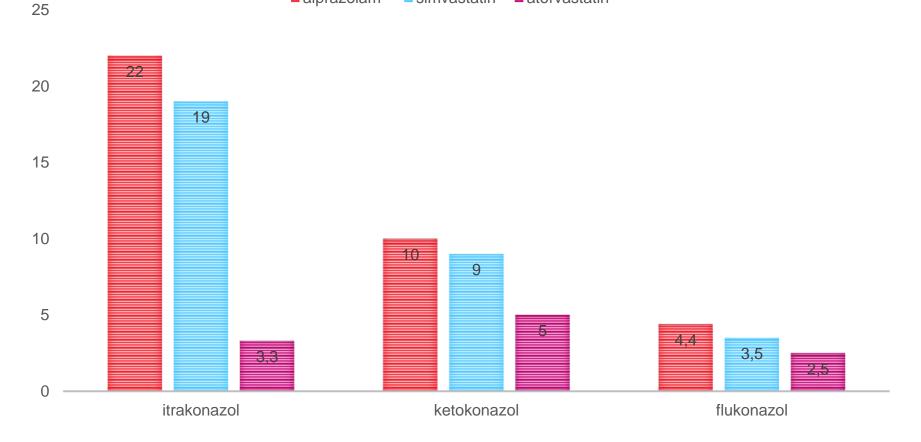

a key enzyme in the metabolism of xenobiotics mainly responsible for Phase I biotransformation processes occurring in the liver, lungs, kidneys, brain, skin, small intestine and other organs

- Substrates P450
 - drug metabolizing by this enzyme
- Inhibitors of cytochrome P450
 - accumulation of the drug in the body
 - increased plasma levels
 - Increased toxicity
- Inducers of Cytochrome P450
 - increased degradation of the drug from the organism
 - subtherapeutic plasma levels of the drug
 - reduce the effect of drugs


Substratos

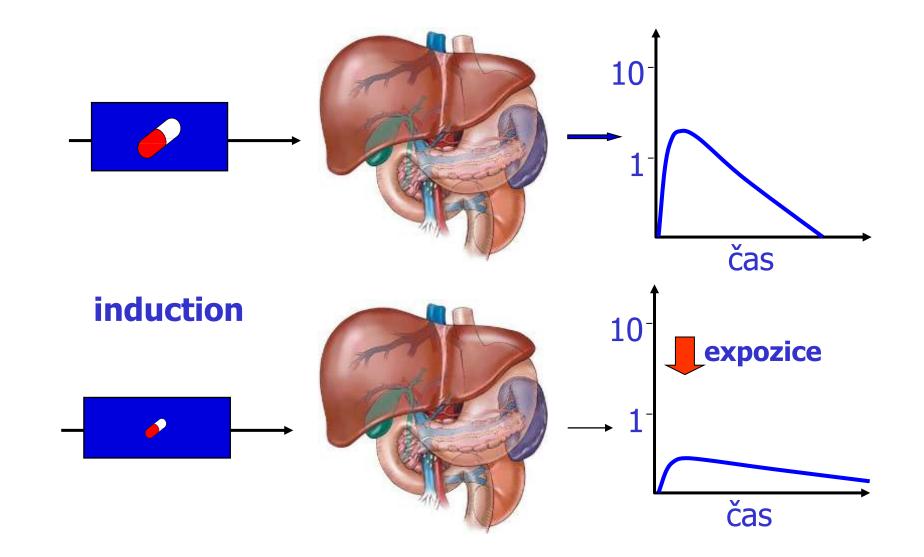
SUDS Izoformy cytoch	strates	high interindividual variability	high interindivid variability	ual	high interindividual variability
CYP1A2	CYP2C19	CYP2C9	CYP2D6	CYP2E1	CYP3A4
Kofein	Amitriptylin	Amitriptylin	Amitriptylin	Acetaminofen	Alprazolam
Klozapin	Citalopram	Celecoxib	Clomipramin		Astemizol
Fuvoxamin	Clomipramin	Diklofenak	Kodein	Dapson	Buspiron
Imipramin	Cyklofosfamid	Ibuprofen	Dextrometorfan	Ethanol	Blokátory Ca ²⁺ kanálů
Mexiletin	Diazepam	Losartan	Imipramin	Isofluran	Karbamazepin
Olanzapin	Imipramin	Naproxen	Metoprolol	Isoniazid	Cyklosporin
Propranolol	Lanzoprazol	Fenytoin	Oxykodon		Doxorubicin
Teofylin	Omeprazol	Sulfamethoxazol	Paroxetin		Etoposid
Warfarin	Fenytoin	Warfarin	Propafenon		Fentanyl
			Tramadol		Midazolam
			Venlafaxin		Simvastatin
					Takrolimus

Basic mechanisms - inhibition


Significant drug interactions - inhibition

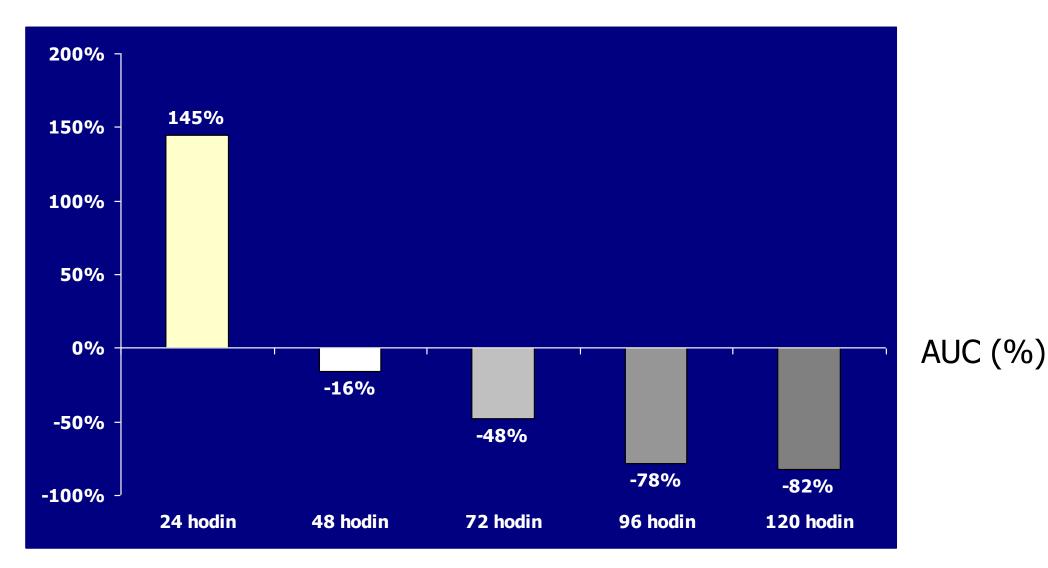
Different inhibiting ability of drugs from the same ATC

EXPECTED MULTIPLE INCREASE IN AUC


alprazolam simvastatin atorvastatin


Inhibitors

CYP1A2	CYP2C19	CYP2C9	CYP2D6	CYP2E1	CYP3A4
Cimetidin	Cimetidin	Amiodaron	Amiodaron	Disulfiram	Amiodaron
Ciprofloxacin	Fluoxetin	Flukonazol	Fluoxetin		Cimetidin
Citalopram	Fluvoxamin	Fluoxetin	Haloperidol		Cyklosporin
Diltiazem	Ketokonazol	Fluvastatin	Indinavir		Diltiazem
Enoxacin	Lanzoprazol	Isoniazid	Paroxetin		Flukonazol
Fluvoxamin	Omeprazol	Metronidazol	Propafenon		Grepová šťáva
Ofloxacin	Paroxetin	Paroxetin	Ritonavir		Inhibitory HIV proteázy
Tiklopidin	Tiklopidin	Fenylbutazon	Sertralin		Itrakonazol
		Sulfamethoxazol / trimethoprim	Tiklopidin		Ketokonazol
		Tiklopidin			Makrolidová antibiotika (vyjma azithromycinu)
					Omeprazol
					Ritonavir
					Verapamil


Basic mechanisms - induction

Drug interactions - induction

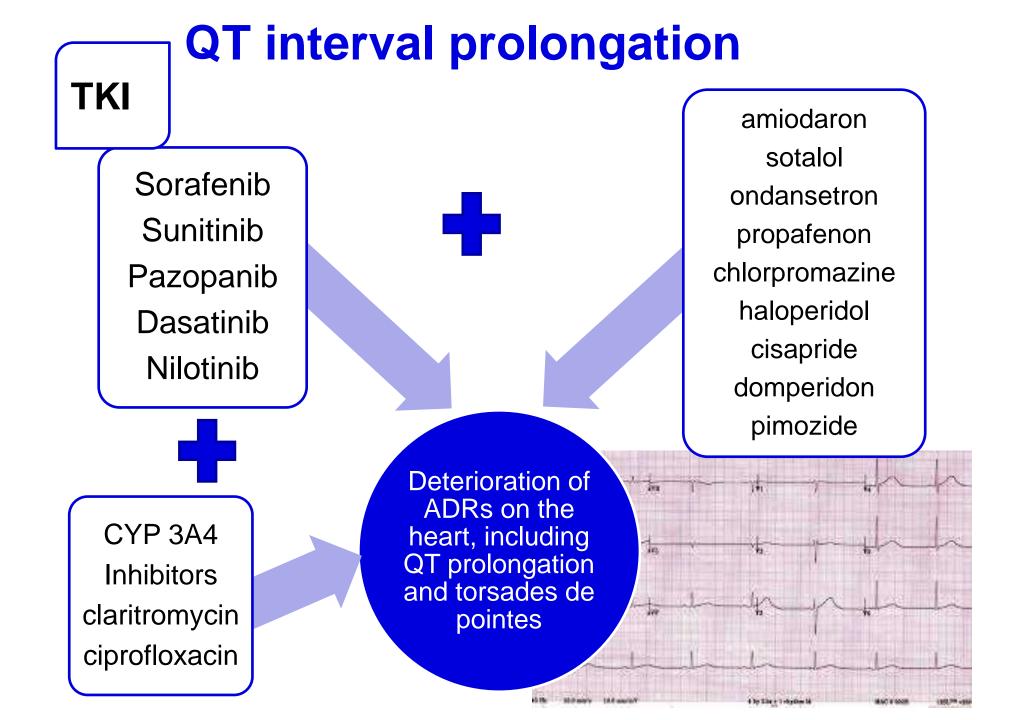
Drug interactions – slow onset of induction

Inductors

CYP1A2	CYP2C19	CYP2C9	CYP2D6	CYP2E1	CYP3A4
Karbamazepin	Karbamazepin	Fenobarbital		Chronicky užívaný alkohol	Dexamethason
Tabákový kouř	Třezalka tečkovaná	Rifampicin		Isoniazid	Fenobarbital
		Třezalka tečkovaná		Tabákový kouř	Fenytoin
					Karbamazepin
					Rifabutin
					Rifampicin
					Ritonavir
					Troglitazon
					Třezalka tečkovaná

It may be seconds up to weeks for example in case of enzyme induction, it needs weeks for protein synthesis, while enzyme inhibition occurs rapidly.

Pharmacodynamics drug interactions


Pharmacodynamics drug interactions

It means alteration of the dug action without change in its serum concentration by pharmacokinetic factors.

Additive effect : 1 + 1 = 2Synergistic effect : 1 + 1 > 2Potentiation effect : 1 + 0 = 2Antagonism : 1 - 1 = 0

Pharmacodynamics drug interactions - examples

Drugs	Result of interaction
Anticholinergics + anticholinergics (anti- parkinsonian agents, butyrophenones, phenothiazines, tricyclic antidepressants, etc.)	Increased anticholinergic effects; heat stroke in hot and humid conditions; adynamic ileus; toxic psychoses
Antihypertensives + drugs causing hypotension (anti-anginals, vasodilators, phenothiazines)	Increased antihypertensive effects; orthostasis
CNS depressants + CNS depressants (alcohol, anti- emetics, antihistamines, hypnosedatives, etc.)	Impaired psychomotor skills, reduced alertness, drowsiness, stupor, respiratory depression, coma, death
QT prolonging drugs + other QT prolonging drugs (Amiodarone + Disopyramide)	Additive prolongation of QT interval, increased risk of torsade de pointes
Methotrexate + co-trimoxazole	Bone marrow megaloblastosis due to folic acid antagonism
Nephrotoxic drugs + nephrotoxic drugs (genta- micin or tobramycin with cefalotin (cephalothin)	Increased nephrotoxicity
Neuromuscular blockers + drugs with neuromuscular blocking effects (e.g. aminoglycoside antibacterials)	Increased neuromuscular blockade; delayed recovery, prolonged apnoea
Potassium supplements + potassium-sparing diuretics (triamterene)	Marked hyperkalaemia

Opposing or antagonistic interactions

Drug affected	Interacting drugs	Results of interaction						
Anticoagulants	Vitamin K	Anticoagulant effects opposed						
Carbenoxolone	Spironolactone	Ulcer-healing effects opposed						
Hypoglycaemic agents	Glucocorticoids	Hypoglycaemic effects opposed						
Hypnotic drugs	Caffeine	Hypnosis opposed						
Levodopa	Antipsychotics (those with Parkinsonian side effects)	Antiparkinsonian effects opposed						

Important Drug Interactions in the Elderly

Drug–Drug Interaction

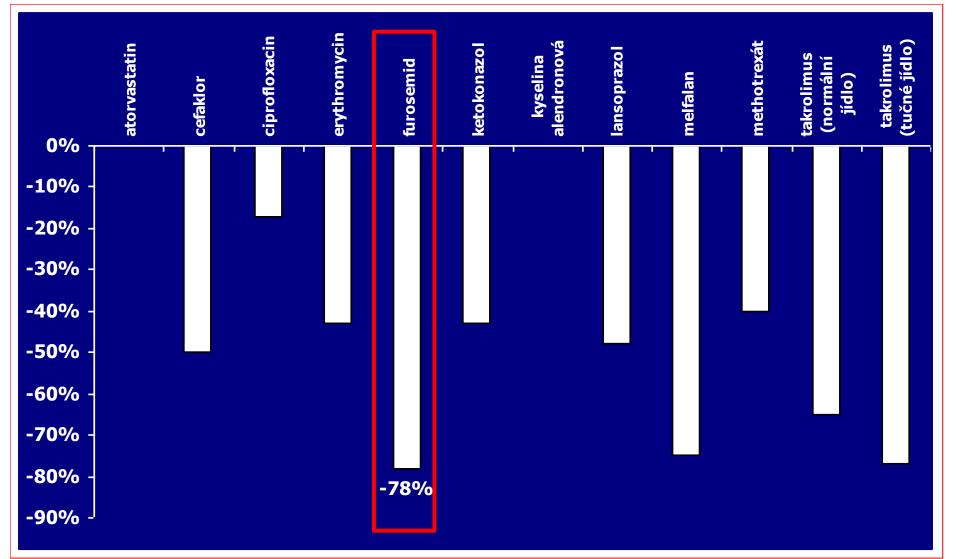
ACE inhibitors + K-sparing diuretics ACE inhibitors + co-trimoxazole Benzodiazepines + CYP3A4 inhibitors Calcium channel blockers + macrolides shock

Digoxin + macrolides Lithium + ACE inhibitors, loop diuretics Phenytoin + co-trimoxazole Glipizide or glyburide + CYP2C9 inhibitors Tamoxifen + paroxetine Theophylline + ciprofloxacin toxicity

Warfarin + co-trimoxazole or fluconazole Warfarin + NSAIDs

Observed Adverse Outcome

Hospitalization for hyperkalemia Hospitalization for hyperkalemia Hospitalization for hip fracture Hospitalization for hypotension or


Hospitalization for digoxin toxicity Hospitalization for lithium toxicity Hospitalization for phenytoin toxicity Hospitalization for hypoglycemia Death from breast cancer Hospitalization for theophylline

Hospitalization for GI bleeding Hospitalization for GI bleeding

ACE = angiotensin-converting enzyme; CYP = cytochrome P450; GI = gastrointestinal; K = potassium; NSAIDs = nonsteroidal anti-inflammatory drugs

Drugs in which food reduces bioavailability

AUC (%)

MUNI MED

50

Furosemide before or after a meal?

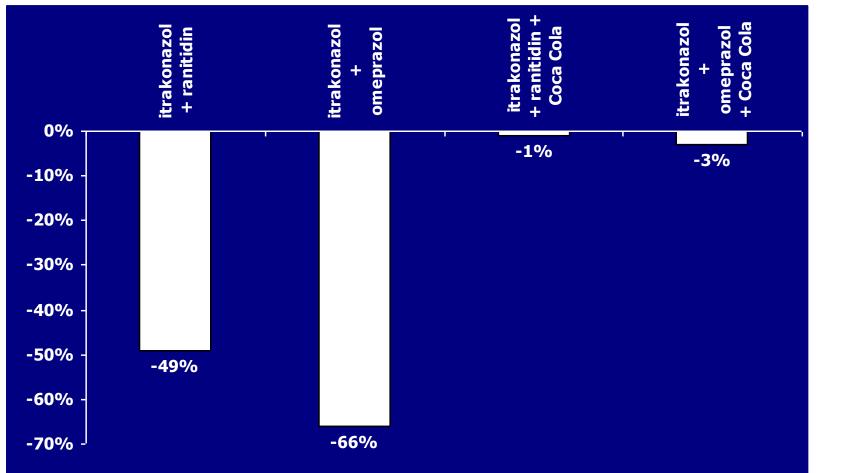
- Furon® does not mentioned in SPC
- Furorese® fasting
- Slovakofarma® furosemide after meal
- Food in healthy volunteers (n = 18) resulted in a 45% reduction in the furosemide (40 mg) curve, a 78% reduction in peak plasma concentrations and a reduction in absolute bioavailability from 76% to 43% and a decrease in diuretic effect.
- Furosemide should be administered one hour before or 2 hours after a meal.

Inhibition of alcohol metabolism

- Disulfiram reaction:
- facial flushing associated with nausea, palpitations and hot flashes, collapse, arrhythmia, syncope, unconsciousness, convulsions
- disulfiram
- griseofulvin
- metronidazole
- co-trimoxazole (Biseptol®)

Ethanol CH₃CH₂OH Alcohol dehydrogenase Aldehyde CH₃CHO Aldehyde dehydrogenase Disulfiram

NAD*


NADH

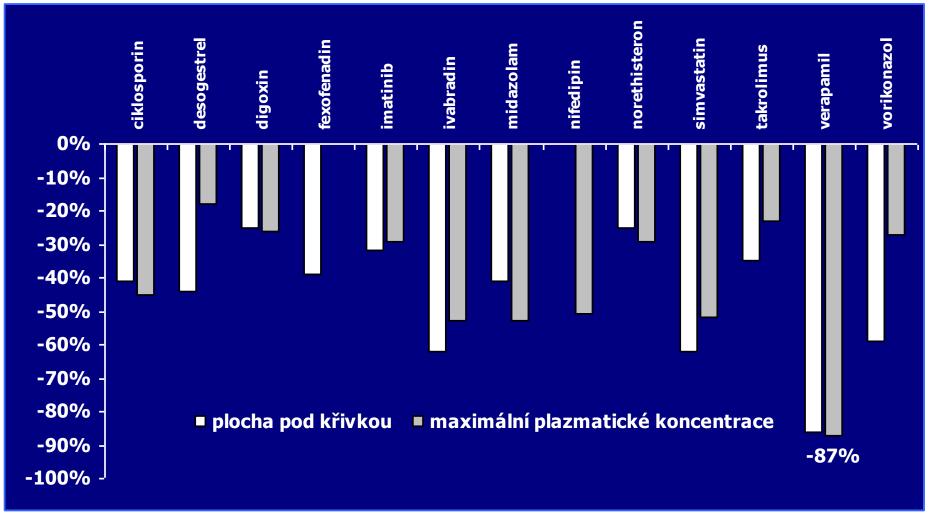
 $\mathbf{N} = \mathbf{I}$

NAD' NADH

- cephalosporins (eg cefamandole, cefmenoxime, cefoperazone, cefotetan)
- ketoconazole
- tolbutamide
- furazolidone
- 52 levamisol

Coca-Cola® phenomenon

ACU (%)

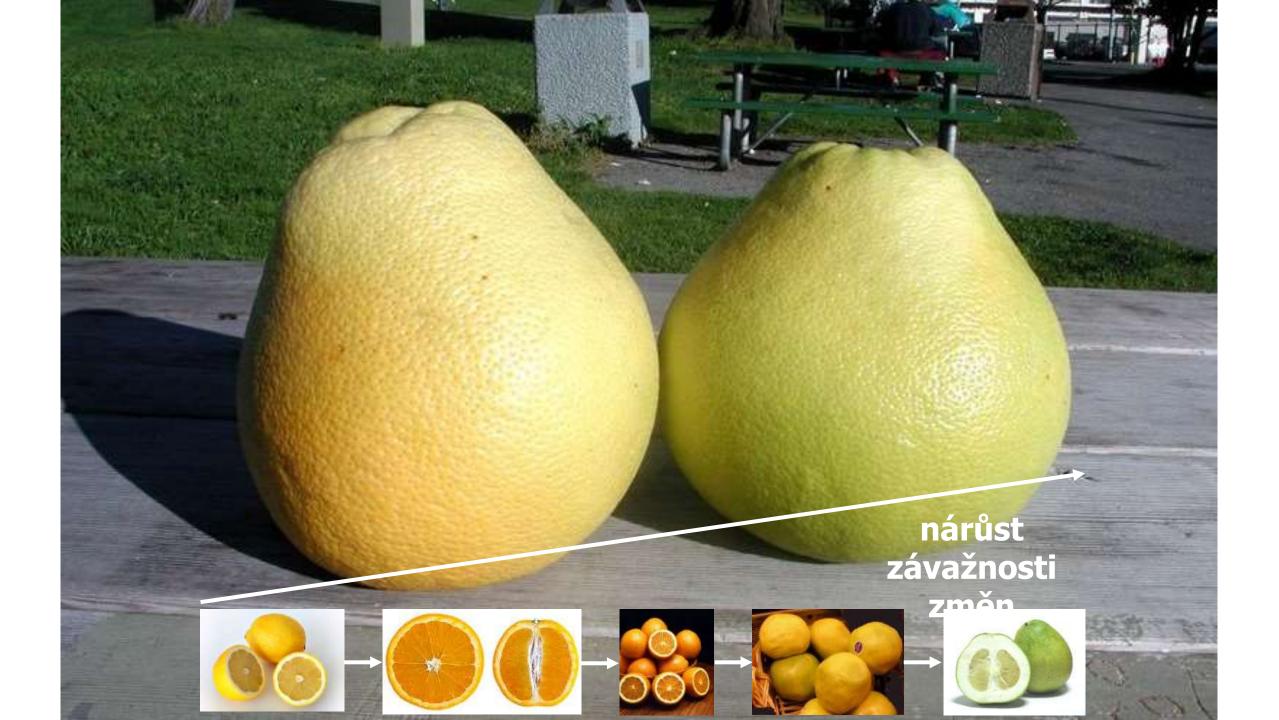

53 Define footer - presentation title / department

MUNI MED

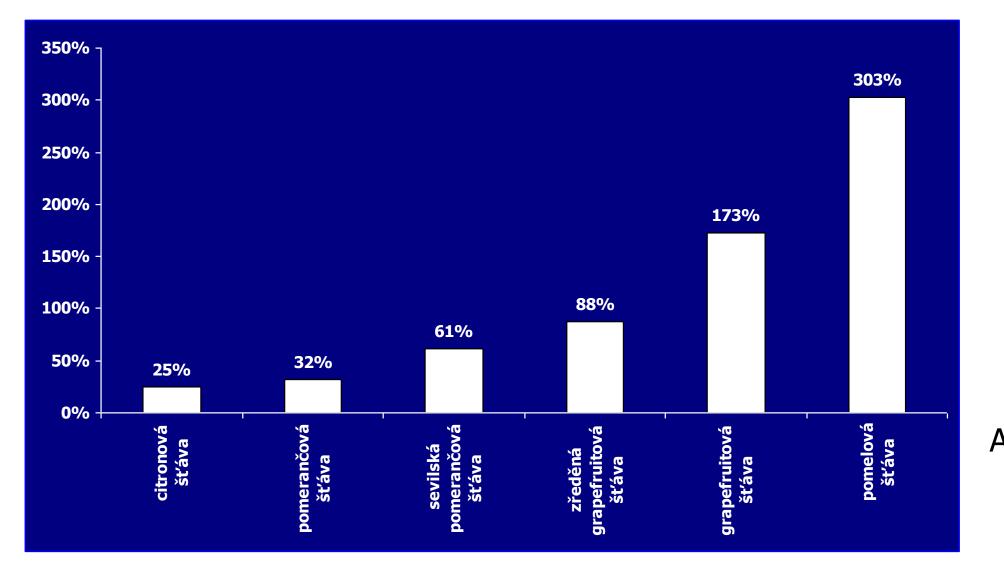
Foods as CYP modulators

- St John's wort
- -CYP3A4 inducer
- CYP2C19 inducer
- CYP2C9 inducer
- P-glycoprotein inducer
- affecting (reducing to loss) the effect of many drugs that are substrates of CYP3A4 or P-glycoprotein

St John's wort



MUNI Med


Foods as CYP modulators

- Garlic
- CYP3A4 inducer
- CYP2C9 inhibitor
- P-glycoprotein inducer
- increase in bleeding after warfarin

- Paprica, cauliflower

Citrus juice + felodipine

AUC (%)

Influencing the effect of drugs by smoking

– Pharmacodynamic

mainly nicotine in the CNS and periphery, has sympathomimetic effects (cardiovascular system, reduces insulin sensitivity)

– Pharmacokinetic

- in the absorption phase nicotine, other products
- in the metabolic phase especially polycyclic hydrocarbons

Pharmacodynamic interactions of nicotine

- Beta-blockers

- Less decrease in BP and Heart rate
- Benzodiazepines
- Less sedative effect
- Discontinuation of smoking on prolonged use of benzodiazepines may cause depression
- Opioids
- Reduction of analgesia
- Oral Contraceptives
- smoking increases the risk of complications p.o. contraception
- in women over 35 who smoke more than 15 cigarettes a day the risk of death is 19: 100,000 vs. 3: 100,000

Effect of smoking on CYP1A2 induction

- Smokers have 1.5 x increased CYP1A activity compared to non-smokers
- Polycyclic aromatic hydrocarbons cause metabolic induction
- Induction already occurs when smoking 10 cigarettes/day
- Typically, higher dosages of some drugs are required for smokers
- After smoking discontinuation, the enzyme activity is reduced to 7.3x per week
- Interrupting smoking requires doses to reduce
- High risk NÚL after smoking interruption (extrapyramidal symptoms, cramps...)

Increased CYP450 activity in smoking

 CYP1A2 amitriptylin, kofein, clozapin, duloxetin, fluvoxamin, haloperidol, imipramin, olanzapin, ondansetron, paracetamol, propranolol, teofylin, warfarin (R-isomer)
 CYP2B6 bupropion, clopidogrel, cyclophosphamid, ifosfamid, methadon, nevirapin

Pharmaceutical drug interactions

Incompatibility

 The incompatibility occurs outside the body, inside the infusion bottles, bags, syringe, or infusion tubes, sometimes visible to the eye.

- Physical Reaction

 In the event of physical reactions to the bath, it is usually a separation or precipitation (eg, dilution of alcoholic solutions) due to a change in the relationship between ionization, non-ionization and solubility.

- Chemical reaction

- Chemical incompatibility means that it is chemically degraded by oxidation, reduction, hydrolysis or decomposition. Chemical reactions can be manifested by turbidity, precipitation, and color changes.
- The result is a reduction in the amount of the medicinal agent or the formation of toxic by-products

Obr. 1a: Chemická precipitace midazolamu (turbidita) a ketaminu (tvorba částic)

Obr. 1b: Fyzikální precipitace midazolamu jako výsledek nepříznivého pH média

Obr. 2a: Fyzikální inkompatibility diazepamu. Obrázek zveřejněn s laskavým svolením F. Schrödera, farmaceuta z Brém v Německu.

MUNI MED

Incompatibility

- Amiodarone diluted in 5% glucose solution meets NE reconstituted in FR precipitation of amiodarone
 Management - dilute NA to 5% glucose solution
- Octreotide meets in one lumen with parenteral nutrition, octreotide is inactivated Management - Separate pathways for parenteral nutrition and octreotide
- Administration of aminoglycosides and beta-lactams meeting in one of the lumens inactivation of the free -NH2 in the free aminoglycosides and -COOH in beta-lactams Management - do not mix in one fluid, split the route of administration, do not give in t the same hour

IV Drug Compatibility Chart

	Alteplase (Activase, rTPA)	Amiodarone (Cordarone)	Argatroban	Atropine	Calcium chloride	Diltia zem (Cardi zem)	Dobutamine (Dobutrex)	Dopamine	Epinephrine (Actrenalin)	Esmolol (Brevibloc)	Furosemide (Lasix)	Heparin	Insulin (regular)	Lidocaine (Xylocaine)	Lorazepam (Ativan)	Magnesium Sulfate	Metoprolol Tartrate (Lopressor)	Morphine Sulfate	Norepinephrine Bitartrate	Pantoprazole (Protonix)	Phenytoin (Dilantin)	Potassium chloride	Propofol (Diprivan)	Sodium bicarbonate	Sodium nitroprusside (Nipride)	Succinyl choline (Anectine)	Verapamil
Abatacept																											
Abciximab				٠													٠										
Acetylcysteine																											
Acyclovir Sodium						٠	٠	٠				•			٠	٠		•		٠		٠	٠	٠			
Adenosine																											
Aldesleukin								•				•			٠	•						٠					
Alfentanil hydrochloride																		٠					٠				
Allopurinol Sodium															٠			•				٠		٠			
Alteplase, Recombinant	L						٠	٠				٠		٠			٠	•									
Amifostine								•			٠				٠	٠		•				٠		٠			
Amikacin Sulfate	L	٠	٠		٠	٠	٠		٠	•	٠	٠			٠	٠		•	٠	٠	٠	٠	٠	٠		٠	٠
Amiodarone Hydrochloride		٠		•	•		٠	•	٠	•	٠	٠	٠	٠	٠	٠		•	•	٠		٠		٠	٠		٠
Amphotericin B Desoxycholate	L															٠				٠		٠	٠	٠			٠
Amphotericin B Lipid-Based														٠	•	٠	•	•			•	٠		٠			٠
Ampicillin Sodium/Sulbactam Sodium		٠				٠			٠	۰			٠					•									
Ampicillin Sodium													٠	٠		٠		•		٠		٠	٠	٠			•
Antihemophilic Factor																											
Argatroban			٠	•		٠	•	•			٠			٠			•	•	•						٠		•
Asparaginase																								٠			
Atracurium Besylate							•	٠	٠	۰		٠						•				٠	٠		٠		
Atropine Sulfate		٠	٠				٠				٠	٠						•		•		•	•	٠			•
Azacitidine																											
Azathioprine																											
Azithromycin											٠							•				٠					

In-vitro: 1-Drug-laboratory tests interaction:

Drug	Laboratory test	Interactions					
Cephalosporin	Urinary glucose	False positive result					
Cephalosporin	Serum Creatinine	Spurious creatinine levels					
Alcohol	ohol γ - glutamyl transpactidases						
Salicylates, Nalidixic acid & Vit C	Urine sugar by Benedict's & Clintest reagents	False positive result					
Spironolactone	RIA of Digoxin	Decrease in values of Digoxin					
Estrogens	Serum Thyroxine	Increase in levels due to hyperproteinaemi a					
MAOI's	Urinary VMA levels	Decrease in levels due to reduced metabolism of NE					

Recommended links

https://www.drugs.com/drug_interactions.html https://www.webmd.com/interaction-checker/default.htm https://reference.medscape.com/drug-interactionchecker www.arizonacert.org (drug interactions) www.drug-interactions.com (P450-mediated drug interactions) http://www.drugwatch.com/drug-interactions/ http://drugagency.cz/lekove-interakce.php?id=9 http://www.uspharmacist.com

www.QTdrugs.org (drug-induced arrhythmia) www.C-Path.org (drug development)

Things to remember

- Interactions are easily forgotten when prescribing
- Interactions are difficult to remember
- Pharmacodynamic interactions can often be predicted across drug classes
- Pharmacokinetic interactions can not be predicted experiments needed
- Many interactions probably remain <u>undescribed</u> so look out for them
- The chances of interaction are 60 times higher in a patient taking 5 drugs than in one taking 2.

Thank you for attention