Classification of the fillings

Plastic

Rigid

Plastic fillings (they are soft when being placed into the cavity)

 The material is soft, it is cured (set) in the cavity: amalgam, composite, glassionomer, temporaries.

Rigid fillings - inlays

 The material is rigid when being placed into the cavity

Metal alloy, composite, ceramics.

Inlays made of the metal alloy (usually precious alloys)

• Rigid filling

• Manufactured in a dental lab

- Direct or indirect method
- Direct method rarely (class I. only)
- Indirect method (most cases)

Inlay

- Crown inlay
- a part of a clinical crown is replaced

- Root canal inlay
- The inlay is cemented into the root canal and replaces a crown (abutment tooth – stump, <u>snag</u>)

Root canal inlay – made of metal alloy (non precious)

This inlay has two parts: root post core – coronal part. The core restore the crown only to the shape for later placement the prosthetic restoration e.g. ceramic crown. These inlays will be discussed next semester

General indications for crown inlays:

General indications for crown inlays:

Big lost of hard dental tissues – when the restoration of the form and function with amalgam or composite is not possible.

General contraindications

- High risk of dental caries (inlay is a special treatment, when higher tendency to dental caries prosthetic treatment is bettter)
- Small and shalow cavities
- Frontal area

Crown inlay

Material

Metal Alloys

➤ Composit

➤ Ceramics

Advantages

Better anatomic form

Better polished

Inlay

Disadvantages

The technology is not easy

More time consuming

> Expensive

> Two appointments

Basic rules of preparation

No undercuts

Light divergence of the walls (facilitating shape). Angle of divergency 6 – 15°

<u>Box</u>

No undercuts

Simple box

Facilitating shape

Classification of inlays Inlay

Classification of inlays Onlay

Classification of inlays Overlay

Metal inlay: sequence of operations Direct method

Dental office

- Preparation
- Isolation of the cavity
- Modellation of heated casting wax
- Sprue pin the thickest part, reservoir
 Dental lab
- Investment
- Casting (method of lost wax)
- -Finishing
- **Dental office**
- Cementation

Direct method is used in very rare cases, in the first class acc.to Black only

Metal inlay: sequence of operations Indirect method

Taking of the impression Model Modellation of the casting wax, (special polymers) Sprue pin Investment Lost wax method

Taking impression using elastomeric materials – dual viscosity technique

Antagonal impression and wax registration of the intermaxillary relationships are also taken

Cementation

• For inlays made of the metal alloy the zinkoxid cement is used.

• It is mixed into the creamy consistency

Non metallic inlays

• Composite

• Ceramics

Preparation

- Box
- No undercuts
- Facilitating shape divergence of the walls appr. 6°
- No bevel
- Thickness of the material 1,5 2 mm

Cavity for inlay made of composite or ceramics

Preparation Tapered diamonds are used

Indirect method

Indirect method – with impression (see above)

CAD CAM - the cavity is scanned on the model or in oral cavity.

Taking impression using elastomeric materials – dual viscosity technique

Antagonal impression and wax registration of the intermaxillary relationships are also taken

Methods of fabrication

Fabrication of these restorations is varioue because of many various materials and technologies.

These technologies will not be discussed.

Fabrication of the composite inlays

Cementation

- > Adhesive materials composite cements
- Special materials requiring acid etching, priming and bonding
- > Chemically or dual curing low viscosity materials

Cementation

- Acid etching
- Washing
- Priming
- Bonding
- Application of the cement
- Curing (during curing the border is covered with glycerin in order to avoid the inhibition layer – this is a superficial part of composite cement that is not completely cured due to oxygen in air)
- Access removimng
- Polishing

Cementation using composite cements

Inlays on the model and in oral cavity

