
ABR: acid-base balance

Normal pH - very close ranges

Analyte	Unit	Reference intervale
рН		7.35 - 7.45
pCO ₂	kPa	4.8 - 5.6
pO ₂	kPa	10 - 13
actual HCO ₃	mmol/l	22 - 26
standart HCO ₃	mmol/l	22 - 26
BE (base exces)	mmol/l	± 2

pH - activity of hydrogen ions

- pH: 7.35-7.45
- Acidosis: pH < 7.35 ...common": 7.35 - 7.10 serious: 7.10 - 6.80 • extreme: < 6.80 (life threatening)
- Alkalosis: serious: 7.45 - 7.70 • extreme: > 7.70
 - > 7.45

Not serious acid-base disorders

- "Common" acidosis: pH 7.35-7.10
 - "Physiologic" situation
- Physiologic occur acids
 - Ketonic acids
 - Lactic acid
- There is no "common" alkalosis
 - Alkalosis is always serious disorder
 - It often results from inadequate therapy of acidosis
- Normal pH
 - Aide-base disorder may be present

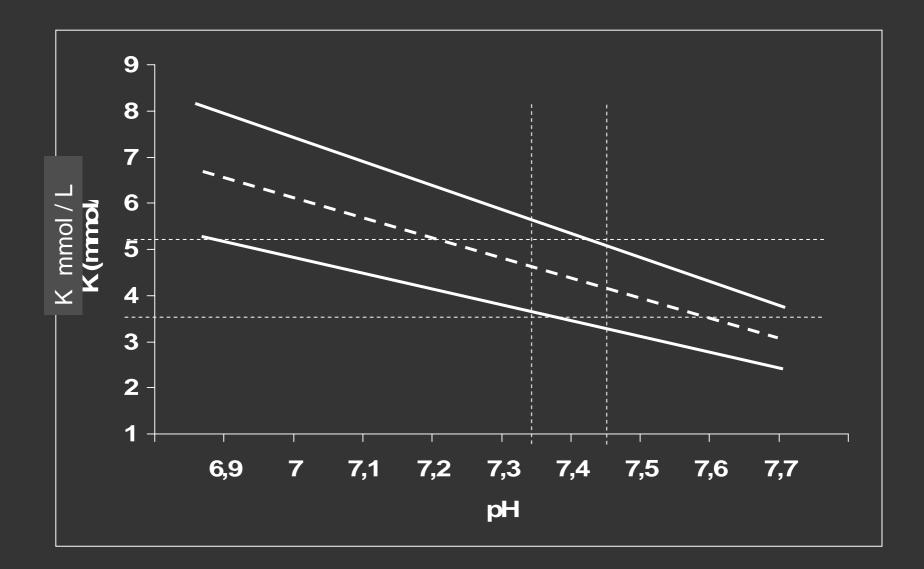
Correction of pH changes

• Buffers

To correct the influence of acids and bases
Reaction of buffers
Immediately

- Compensation
 - With delay
 - Lungs and/or kidney

Buffers


• Bicarbonate

- Extracellular fluid (blood, interstitial fluid)
- Cerebrospinal fluid activity of the respiratory centre

• Haemoglobin

- Intravascular fluid
- Phosphate
 - Intracellular fluid
 - Connection to the concentration of K⁺!
- Proteins
 - Both intra and extracellular fluid
 - Small capacity

Relationship between K a pH

K and pH

• Acidosis = excess of H⁺ ions

H⁺ move to ICF, where is bound to phosphate buffer, K⁺ is released from buffer and move out to maintain electroneutrality

Concentration of K⁺ increase

K and pH

- Alcalosis = lack of H⁺ ions
 - H⁺ is released in ICF from phosphate buffer, K⁺ move into cells and is bound to P buffer
 - Concentration of K⁺ decrease

Buffers

• Blood

Bicarbonate 53%
Phosphate 5%
Haemoglobin 35%
Proteins 7%

HCO_3^- a Hb system

• Bicarbonate

- Concentration: 24 ± 2 mmol/l
- ▶ Regulation of HCO₃⁻ level: kidney

• Haemoglobin

- Similar capacity as HCO₃⁻
- ◆ Oxidized HbO is stronger acid: it releases H⁺
 ★ Tissues: HbO → Hb: binding of H⁺
 ★ Lungs: Hb → HbO: release of H⁺

Compensation of A-B disorders

Respiratory A-B disorders
 Renal compensation

"Metabolic" A-B disorders
 Lung and renal compensation

Respiratory compensation of A-B disorders \uparrow or \downarrow of ventilation

- Metabolic acidosis: hyperventilation
 - Stimulation of respiratory centre by low pH
 - Very effective mechanism to \downarrow pCO₂
 - Good tissues saturation with O₂

- Metabolic alkalosis: hypoventilation = hypoxia !!
 - Inhibition of respiratory centre by elevated pH
 - Ineffective mechanism
 - \uparrow pCO₂, \downarrow pO₂, hypoxia = hypoventilation is cancelled

Respiratory compensation of A-B disorders \uparrow or \downarrow of ventilation

- Respiratory compensation started immediately, but
 - Maximal compensation: 24 hours
 - Hyperventilation persists after adjustment of acidosis
 - ★Risk of respiratory alkalosis development

Renal compensation of A-B disorders

- Acidosis
 - Synthesis of HCO₃⁻
 Excretion of H⁺ to urine
 ★Ammonium ions (NH₄⁺)
 ★Phosphate ions (H₂PO₄⁻)
- Alkalosis:
 - Excretion of HCO₃⁻ to the urine
 Inhibition of H⁺ excretion
 ★ Stop of NH₄ synthesis

 ★ HPO₄²⁻ synthesis is started

Renal compensation of A-B disorders

- Renal compensation starts during 24 hours
 - It is complete is after 1 week
 - When is acidosis or alkalosis removed (therapy), compensation continues several days
 - ★Risk of reverse A-B disorder !

Acid-base disorders

- Simple disorders
 - 1. Metabolic acidosis
 - 2. Metabolic alkalosis
 - 3. Respiratory acidosis
 - 4. Respiratory alkalosis

- Combined acid-base disorders
 - Result of compensation mechanisms
 - Primary combined disorders

Metabolic acidosis

• SOURCES OF HYDROGEN IONS

- Cell Metabolism
- Food Products
- Medications
- Metabolic Intermediate by-products
- Some disease processes

METABOLIC ACIDOSIS

Metabolic acidosis is always characterized by a reduction in plasma HCO₃⁻ while CO₂ remains normal

Metabolic acidosis

- Laboratory diagnosis:
 - ► ↓ pH
 - \downarrow HCO₃-
 - \leftrightarrow pCO₂ (acute), \downarrow (respiratory compensation)
- Causes:
 a) Without HCO₃⁻ loss
 ★ ↑ acids
 b) Due to loss of HCO₃⁻

↑ production of acids
 ▶ Kenotic acids
 ★ Starvation
 ★ Unregulated DM
 ★ High grade fever

Ketones
 ★Acetone
 ★Acetoacetic acid
 ★β-hydroxybutyrous acid

• Others acids

Ingestion of
 ★Ethylene glycol (antifreeze) → oxalic acid
 ★Methanol → formate acid
 ★Salicylate

Acid retention

- Acute renal failure, chronic renal failure
- Kidneys are unable
 - ★To rid the plasma of even the normal amounts of H⁺ generated from metabolic acids
 - **\star**To conserve an adequate amount of HCO₃-

Acidosis without HCO_3^{-1} loss

- Lactic acidosis type A (hypoxia)
 - Respiratory insufficiency, shock
 - Anaemia (Hb < 70 g/l), carbon monoxide poisoning, extreme muscular activity</p>
 - Blood stagnation

• Type B (insufficient utilization of lactic acid)

- Hepatic failure
- Biguanide poisoning
- Sepsis

Acidosis due to bicarbonate loss

- Real bicarbonates loss
 - Severe diarrhoea
 - Pancreatic fistula

- Decline of bicarbonates: Hyperchloremic acidosis
 - ↑ chloride intake
 ★KCI, NaCI, NH₄CI

Therapy of the metabolic acidosis

NaHCO₃
 How much ?

- Calculation
 - mmol $HCO_3 = BE \times 0.3 \times weight (kg)$

Therapy of the metabolic acidosis

The rules for therapy of met. ac.
Therapy have to be causal (if possible) !
If the acidosis is mild, treatment for the underlying disorder may be all that's needed

Therapy of the metabolic acidosis

The rules for therapy of met. ac.
HCO₃⁻ may be given only when
Causal therapy is not possible
Acidosis is severe: pH < 7,1

Maximal dose of bicarbonate
 1/3 - 1/2 of the calculated dose

Metabolic alkalosis

- Dg:
 - ▶ ↑ pH
 - \uparrow HCO₃
 - $\leftrightarrow pCO_2$ (acute), \uparrow (pulmonary compensation)
 - \star Breathing suppressed to hold CO₂
 - Types of MAL:
 - Responding for treatment with chlorides
 - **\star** MAL due to loss of CI
 - Not responding for treatment with chlorides

MAL due to loss of CI

Vomiting

• Drainage of gastric juice

• Diuretic use (thiazides)

MAL due to lack of CI: therapy
 CI⁻ (HCO₃⁻ ions replaced by CI⁻ ions)
 NaCI, KCI, NH₄CI, arginin hydrochlorid

• How much of Cl⁻?

- BE x 0.3 x weight (kg)
- Deficiency of Cl⁻ x 0.3 x weight (kg)

MAL due to lack of CI: therapy

- The rules for therapy of met. alkalosis
 - Therapy of alkalosis should be started in all cases
 - The full calculated dose of Cl⁻ should be given
- Alkalosis is more dangerous than acidosis!

MAL not responding for treatment with CI-

• Hyperaldosteronism

- Long-term therapy with glukocorticoides
- latrogenic
 - \uparrow supplementation of HCO₃-

MAL not responding for treatment with CI-:

• Therapy have to be causal

• Hypokalemia - KCI

• Live- threatening MAL - Haemodialysis

- It is characterized by retention of CO₂
 Dg:
 - ►↓ pH
 - \uparrow pCO₂
 - $\blacktriangleright \leftrightarrow HCO_3$, then \uparrow (renal compensation)
- Cause of RAC: retention CO₂
 - Central
 - Pulmonary
 - Cardiac

Central (depression of respiratory centre)
Drug induced - sedatives, narcotics
Lesions of resp. centre - tumour, trauma, ...

• Pulmonary

- Neuromuscular (myastenia gravis, botulism)
- Muscles (myositis, muscular dystrophy)
- Thorax (pneumothorax)
- Respiratory tract (asthma, bronchostenosis, tumour)
- Pulmonary parenchyma (pulmonary edema, ARDS, pneumonia)

• Cardiac

Low minute volume of cardiac output

Respiratory acidosis: Therapy

- Therapy must be causal !!
- Hypoxia is more serious problem then acidosis !!!
- Improvement of respiration, sometime oxygen
- In the life threatening RAC
 - Artificial ventilation
- Bicarbonate is contraindicated !!!
- Oxygen must be done with caution !
 - Hypoxia stimulate respiratory centre
 Increased pO₂ may inhibite respiration

Respiratory alkalosis (RAL)

- Stimulation of the respiratory center
- Dg:
 - ↑ pH
 - \downarrow pCO₂
 - \leftrightarrow HCO₃, then \downarrow (kidney compenzation)

Respiratory alkalosis (RAL)

Causes of RAL

- Anxiety, emotional disturbances, hysteria
- Pulmonary embolism
- Lesions of the CNS (respiratory center)
 - Encephalitis, meningitis, tumours, trauma
- Pregnancy
- Fever
- ▶ High altitude (low pO₂)
 - Too much CO₂ is "blown off"

Respiratory alkalosis (RAL): Therapy

- Depression of the respiratory center
 - Sedatives
- Life threatening RAL
 - Arteficial ventilation

Combined A-B disorders

- Primary combined A-B disorders
- Result of the compensation
 - Metabolic acidosis is compensated by respiratory alkalosis
 - Metabolic alkalosis is compensated by respiratory acidosis
 - Respiratory acidosis is compensated by metabolic alkalosis
 - Respiratory alkalosis is compensated by metabolic acidosis

How to recognized combined A-B disorders ?

- Respiratory component is present, if
 pCO₂ is changed
- Sometimes it may be difficult to detect metabolic components, as both acidosis and alkalosis may be present, resulting in the normal laboratory values (pH, HCO₃, pCO₂, pO₂):
 - Concentration of Cl⁻, K⁺, Na⁺ must be measured !
 - Some calculation may be useful

Calculations that help recognize combined disorders

• Buffer Base = $Na^+ + K^+ - CI^-$

Normal result: 42 mmol/l

 \uparrow = metabolic alkalosis is probably present

Calculations that help recognize combined disorders

• Anion gap = $(Na^+ + K^+) - (Cl^- + HCO_3^-)$

Normal result = 18 mmol/l

 = metabolic acidosis is probably present (↑concentration of organics anions)

 Lactate, kenotic acids, multiple acid radicals

How to recognized combined A-B disorders ?

- Normal pH do not exclude A-B disorders !
- What we need for correct interpretation of A-B status ?
 - ▶ pH, HCO₃-, pCO₂, pO₂
 - Na, K, Cl
 - Patients's history and clinical examination!

How to recognized combined A-B disorders ?

- An interpretation of the blood's A-B status must take into account the electrolyte status
- CI and K deserve special attention!
- Changes in Cl⁻ conc. are followed by the changes in A-B status
 - ▶ ↑ of Cl⁻ results in ↓ of HCO_3^- and it is followed by metabolic acidosis (hyperchloremic acidosis)
 - \downarrow of Cl⁻ results in \uparrow of HCO₃⁻ and it is followed by metabolic alkalosis (hypochloremic alkalosis)