Acido-basic disorders

Spac Jiri

Hendersonova-Hasselbalchova equation

• pK_a = 6,1

pН

- [HCO₃⁻] = 24 mmol.l⁻¹
- $[H_2CO_3] = 1,2 \text{ mmol.}I^{-1}$

Systemic arterial pH is maintained between 7.35 and 7.45 by extracellular and intracellular chemical buffering together with respiratory and renal regulatory mechanisms. The control of arterial CO2 tension (Paco2) by the central nervous system (CNS) and respiratory system and the control of plasma bicarbonate by the kidneys stabilize the arterial pH by excretion or retention of acid or alkali. The metabolic and respiratory components that regulate systemic pH are described by the Henderson-Hasselbalch equation:

Henderson - Hasselbach

Normal acido-basic homeostasis

Systemic arterial pH is maintained between 7.35 and 7.45 by extracellular and intracellular chemical buffering together with respiratory and renal regulatory mechanisms

Preanalytic phase

The most suitable sample is **arterial blood.** Most often it is taken from a. Radialis into a capillary on a thin needle or into a modified syringe; lithium heparin is used as an anticoagulant. In the intensive care units, an arterial catheter is often inserted to allow repeated donations. In any case, ensure that the sample is taken without air bubbles.

Blood sample collection for blood gas analysis

Preanalytic phase

arterialized capillary blood, most commonly from the fingertip or the earlobe. The capillary sample should be composed as much as possible of arterial blood. Therefore, it is necessary to increase the blood flow through the capillaries at the place of collection ("arterialization") - by heating, massages, etc. as much as possible

VENOUS blood should be sampled from the central venous bed (central venous catheter, port). Peripheral venous blood does not adequately report the overall metabolic status of the organism, especially in patients with severe centralized circulation. Central venous blood is collected into a syringe with balanced lithium heparin, even in this case the collection must be anaerobic.

PRINCIPLE OF BLOOD GAS ANALYSER

BLOOD GAS ANALYSER works with three in-built electrodes

- 1. pco₂ electrode
- 2. pO 2 electrode
- 3. pH sensitive glass electrode

The actual pH is determined electrochemically, typically by a miniaturized glass electrode.

The partial pressure of carbon dioxide (pCO2) is determined electrochemically by a Severinghaus electrode. It is also a glass electrode but is coated with a layer of water and separated from the sample by a gas permeable membrane. CO2 from the sample diffuses through the semipermeable membrane into distilled water, the pH of the resulting solution depends on pCO2.

Current and standard bicarbonates are calculated from the measured pH and pCO2 values,

Current HCO3 - This parameter indicates the current concentration of bicarbonate in the blood being examined. Since it depends on both the metabolic and respiratory components of acid-base balance, its interpretation is complicated.

Standard HCO3 - what would be the concentration of bicarbonate in the blood sample examined after elimination of the respiratory disorder, ie after saturation of the blood to pCO2 = 5.3 kPa. It therefore only informs about the metabolic component of the acid-base balance.

Base excess, BE evaluates only the metabolic component of the acid-base balance.

It is defined as the amount of strong acid that would need to be added to the sample to reach a pH of 7.4, provided that the respiratory disorder ABR (ie pCO2 = 5.3 kPa) is excluded. In metabolic acidosis, a strong base would have to be add the corresponding parameter is referred to as base deficiency, base deficiency, BD, or (more often) expressed as negative BE.

Acid-Base Disturbances

Acidosis - Respiratory - Metabolic: HCO₃-

- renal failure, renal tubular acidosis

- loss of alkali

Alkalosis - Respiratory - Metabolic:HCO₃-

- excess loss of acids
- bicarbonate retention
- ingestion of alkali

© Elsevier. Boon et al.: Davidson's Principles and Practice of Medicine 20e - www.studentconsult.com

SYMPTOMS OF ACIDOSIS

Central Nervous System Headache Sleepiness Confusion Loss of consciousness Coma

Respiratory System Shortness of breath Coughing

Heart

Arrhythmia Increased heart rate

Muscular System Seizures Weakness

Digestive System Nausea Vomiting Diarrhea

SYMPTOMS OF ALKALOSIS

Central Nervous System

Confusion Light-headedness Stupor Coma

Peripheral Nervous System

Hand tremor Numbness or tingling in the face, hands, or feet

Muscular System Twitching Prolonged spasms

Digestive System Nausea Vomiting

Acidosis

Metabolic acidosis – increased H⁺, decreased HCO₃⁻

Respiratory acidosis – increased H+, increased PaCO₂

Primary Acid-base Disorders: Metabolic Acidosis

Metabolic acidosis - A primary acid-base disorder where the first change is a lowering of HCO₃⁻, resulting in decreased pH. Compensation (bringing pH back up toward normal) is a secondary hyperventilation; this lowering of PaCO₂ is not respiratory alkalosis since it is not a primary process.

Primary Event	Compensatory Event
↓ HCO ₃ -	↓HCO ₃ -
↓ pH ~	↓ pH ~
PaCO ₂	$\downarrow PaCO_2$

Simple metabolic acidosis

Disturbance	Blood PH	Primary change	Compensatory response	Predicted compensation
Metabolic acidosis	< 7,40	$HCO_3 < 24 \text{ mmo/l}$	PCO ₂ < 5,33 kPa	PCO ₂ fall in kPa = 0,16 x HCO ₃ fall in mmol/l

Compensation of metabolic acidosis

$H^+ + HCO_3^- \leftrightarrow CO_2 + H_2O$

MAC

MAC

Kompenzace MAC

ABR and electroneutrality

Anion gap (AG)

- The difference between main measured cations (Na + K) and the measured anions (C1 + HCO₃)
- Normally 13 to 15 mmol/l
- Unmeasured anions (P⁻ albumin, SO₄, PO₃, ORG⁻)

Na – (CI+HCO3) = anion gap

Anion Gap

- AG = [Na⁺ + K⁺] [Cl⁻ + HCO₃⁻]
- Norma: 14 ± 2 mmol/L
- Hlavní "neměřitelné" anionty, zahrnuté v AG: – albumin
 - fosfáty
 - sulfáty
 - organické anionty
- Slouží k posouzení příčin metabolické acidozy

- High anion gap (normal Cl)
 - Increased unmeasured anions (albumine, inorganic, organic)

SIGNS AND SYMPTOMS

METABOLIC ACIDOSIS

1

100

- Headache
- · JBP
- Hyperkalemia
- Muscle Twitching
- Warm, Flushed
 Skin
 (Vasodilation)
- Nausea, Vomiting

 Huscle Tone,
Reflexes (Confusion, 1Drowsiness)

> Kussmaul Respirations
> (Compensatory Hyperventilation)

 Causes:
TH⁻ Production (DKA, hypermetabolism)
H⁻ Elimination (renal failure)
HCO₃ Production (dehydration, liver failure)
THCO₃ Elimination (diarrhea, fistulas)

Too much H*(acid) Too little Bicarb

Acid-base disorders

Metabolic acidosis lead to hyperkalaemia
Shift H/K or Na

- Decrease of 0,1 PH increase plasma K by 0,6 mmol/l
 - Diabetic ketoacidosis, lactic acidosis, diarrhea and RTA often associated with low K intracellulary !!

Metabolic acidosis – clinical features

- Increased ventilation (Kussmauls)
- Increased tachycardia
- Decreased cardiac contractility
- Periferal arterial dilatation + central venous contraction → pulmonary edema with minimal overload
- CNS headache, lethargy, stupor, coma

Causes of metabolic acidosis 1

Disorder

Normal anion gap

Inorganic acid addition

Gastrointestinal base loss

Renal tubular acidosis

Mechanism

Therapy or poisoning with NH_4Cl, HCl Loss of HCO₃ in diarrhoea, small bowel fistula, urinary diversion procedure Urinary loss of HCO₃ in proximal RTA, impaired tubular acid secretion in distal RTA

Causes of renal tubular acidosis

<u>Type</u> Proximal RTA (type 2)

Classical distal RTA (type 1)

Hyperkalemic distal RTA (type 4)

Examples

Congenital (Fanocon, cystinosis, Wilsons disease) Paraproteinaemia, amyloidosis Heavy metal toxicity (Pb, Cd, Hg) Hyperparathyreosis Carboanhydrase inhibitors (ifosfamide)

Congenital, hyperglobulinaemia, Autoimunne connective tissue disease (SLE) Toxins and drugs (toluene, lithium, amphotericin)

Hypoaldosteronism, Obstructive nephropathy Drugs (amiloride, spironolactone) Renal transplant rejection

Acid-base disorders

Disturbance	Blood PH	Primary change	Compensatory response	Predicted compensation
Metabolic acidosis	< 7,40	HCO ₃ < 24 mmo/l	PCO ₂ < 5,33 kPa	PCO ₂ fall in kPa = 0,16 x HCO ₃ fall in mmol/l
Metabolic alkalosis	> 7,40	HCO ₃ > 24 mmol/l	PCO ₂ >5,33 kPa	PCO ₂ rise in kPa = 0,08 x HCO ₃ rise in mmol/l
Respiratory acidosis	< 7,40	PCO ₂ >5,33 kPa	HCO ₃ >24 mmol/l	Acute: HCO ₃ rise in mmol/l = 0,75 x PCO ₂ rise in kPa Chronic: HCO ₃ rise in mmol/l = 2,62 x PCO ₂ rise in kPa
Respiratory alkalosis	> 7,40	PCO ₂ < 5,33 kPa	HCO ₃ < 24 mmo/l	Acute: HCO ₃ fall in mmol/l = 1,50 x PCO ₂ fall in kPa Chronic: HCO ₃ fall in mmol/l = 3,75 x PCO ₂ fall in kPa

PH of 7,4 = H⁺ of 40 nmol/l

PCO₂ of 5,33 kPa = 40 mmHg, PCO₂ does not rise above 7,33 kPa (55 mmHg), not adequate oxygenation

Primary Acid-base Disorders: Respiratory Acidosis

Respiratory acidosis - A primary disorder where the first change is an elevation of PaCO₂, resulting in decreased pH. Compensation (bringing pH back up toward normal) is a secondary retention of bicarbonate by the kidneys; this elevation of HCO₃⁻ is not metabolic alkalosis since it is not a primary process.

Respirační acidóza (RA)

- primární změnou je ↓pH v důsledku ↑PaCO₂ (>40 mmHg), tj. hyperkapnie
 - akutní (↓pH)
 - chronická (↓pH nebo normální pH)
 - renální kompenzace retence HCO₃⁻, 3-4 dny
- příčiny:
 - pokles alveolární ventilace
 - (zvýš. koncentrace CO₂ ve vdechovaném vzduchu)
 - (zvýšená produkce CO₂)

$$\int paCO_2 = VCO_2 / VA$$

Simple respiratory acidosis

Acute compensation of respiratory acidosis

Chronic compensation of respiratory acidosis

Causes of respiratory acidosis

- Severe pulmonary disease
- Respiratory muscle fatigue
- Increase of PaCO₂ (central respiratory control)
- Renal compensation by reabsorbtion of bicarbonate (about 3 days)

Respiratory acidosis clinical features

• Acute

– Anxiety, dyspnoea, halucination, coma

• Chronic

 Sleep disturbances, sleep inversion somnolence, loss of memory, tremor, myoclonics jerks, asterixis

Respiratory acidosis treatment

- Acute
 - Adequate alveolar ventilation
 - Intubation, mechanical ventilation
 - Oxygen administration titrate carefully in CHOPD
 - No rapid correction (respiratory alcalosis symptoms)
 - Sufficient Cl and K to enhance renal excretion of bicarbonate
- Chronic
 - Improve lung function (bronchodilatans, glucocorticoids, diuretics)

Alkalosis

Metabolic alkalosis – decreased H⁺, increased HCO₃⁻

Respiratory alkalosis – decreased H+, decreased PaCO₂

Primary Acid-base Disorders: Metabolic Alkalosis

Metabolic alkalosis - A primary acid-base disorder where the first change is an elevation of HCO₃⁻, resulting in increased pH. Compensation is a secondary hypoventilation (increased PaCO₂), which is not respiratory acidosis since it is not a primary process. Compensation for metabolic alkalosis (attempting to bring pH back down toward normal) is less predictable than for the other three acidbase disorders.

Compensatory Event
↑HCO ₃ -
↑ pH ~
↑PaCO ₂

Causes of respiratory alcalosis

- Hyperventilation
- Critically ill patients
- Mechanical ventilation
- 2 to 6 hour hypocapnia → decrease of renal amonium and titrable acid excretion
- Full adaptation take several days
- Many causes and diseases
 - Drugs (salycilates, methylxantines) direct stimulation of respiration
 - Progesterone (gravidity)
 - Liver failure
 - Gramnegative septikaemia before fever with hypotension and hypoxemia

Simple metabolic alkalosis

Compensation of metabolic alkalosis

Causes of metabolic alkalosis 1

- Exogenous bicarbonate load
 - Milk alkali syndrome
 - Acute alkali administration
- Effective ECFV contraction, normotension, K deficiency and secondary hyperreninemic hyperaldosteronism
 - Gastrointestinal origin
 - Vomiting, gastric aspiration
 - Congenital chloridorhea
 - Villous adenoma
 - Renal origin
 - Diuretic, edematous states, posthypercapnic state, recovery of acidosis
 - Hypercalcemia/hypoparthyreoidism, Mg, K deficiency
 - Barttters syndrome
 - Gitemans syndrome

Hypochloremická alkalóza

Hypochloremická alkalóza

Causes of metabolic alkalosis 1

- ECFV expansion, low K, hypertension
 - High renin
 - Renal artery stenosis, accelerated hypertension
 - Renin secreting tumors, estrogen therapy
 - Low renin
 - Primary aldosteronism
 - Adenoma, primary hyperplasia, carcinoma
 - Adrenal enzyme defects
 - 11 beta hydrochylase deficiency
 - 17 alfa hydroxylase deficiency
 - Cushings syndrome
 - Ectopic corticotropin
 - Adrenal adenoma
 - Primary pituitary
 - Other
 - Licorice, carbenoxolone, chewers tobaco
 - Liddles syndrome

Metabolic alkalosis clinical features

- Changes in central and peripheral nervous system
 - Similar to those hypocalcemia
 - Mental confusion, obtundation, seizures
 - Paresthesia, muscular cramping, tetany, aggravation of arrythmias
- Hypoxemia in chronic obstructive pulmonary disease
- Hypokalemia and hypophosphatemia

Metabolic alkalosis treatment

- Correcting the underlying stimulus for generating bicarbonate
 - Discontinuation of diuretics
 - H₂ blockers or proton pump blockers
- Remove the factors that sustain bicarbonate reabsorption
 - ECF contraction
 - K deficiency
- ECF expansion (NaCl, KCl)
- Acetazolamide
- Arginin hydrochloride
- NH_4Cl oraly
- Hemodialysis

Primary Acid-base Disorders: Respiratory Alkalosis

Respiratory alkalosis - A primary disorder where the first change is a lowering of PaCO₂, resulting in an elevated pH. Compensation (bringing the pH back down toward normal) is a secondary lowering of bicarbonate (HCO₃) by the kidneys; this reduction in HCO₃⁻ is not metabolic acidosis, since it is not a primary process.

Primary Event	Compensatory Event
HCO ₃ -	↓HCO ₃ -
↑ pH ~	↑ pH ~
↓ PaCO₂	↓PaCO ₂

Simple respiratory alkalosis

Acute compensation of respiratory alkalosis

Chronic compensation of respiratory alkalosis

Respiratory alkalosis clinical features

- Reduced cerebral blood flow
 - Dizziness, mental confusion, seizures
- Cardiac arrhythmias
 - Intracellular shift of Na, K
 - Decreased Ca²⁺
- Paresthesia, circumoral numbness, tetany

Respiratory alkalosis treatment

- Ventilator management (dead space, tidal volume and frequency)
- Rebreathing from paper bag
- Betablockers in hyperadrenergic states

STEP-BY-STEP ANALYSIS OF ACID-BASE STATUS

Look at the pO₂ (<80 mm Hg) and O₂ saturation (<90%) for hypoxemia

2. Look at the *pH*

< 7.35 : ACIDOSIS
> 7.45 : ALKALOSIS
7.35 – 7.45 : normal/mixed disorder

3. Look at *pCO*₂

> 45 mm Hg : Increased (Acidic)
< 35 mm Hg : Decreased (Alkalotic)

4. Look at the *HCO*₃-

> 26 mEq/L : Increased (Alkalotic) < 22 mEq/L : Decreased (Acidic)

5. Determine the acid-base disorder, match either the pCO₂ or the HCO₃⁻ with the pH 6. Compensation... are the CO_2 or HCO_3^- of opposite type ?

7. Calculate the *anion gap* if it is more there is Metabolic acidosis

$AG = [Na^+] - [Cl^- + HCO_3^-]$

Na (140) + K (5) = CI (105) – HCO3 –(25) + Gap (15)

If Gap > 30 – clinically important acidosis

Treat the patient not the ABG!!!

Thank you...

Summary

- Individualize patient and correcting underlying stimulus
- ECF volume clinical examination (contraction or edema)
- Laboratory plasma
 - Na, K, Cl, Ca, Mg,
 - Proteins and albumin, urea, kreatinin, AST, ALT
 - Bicarbonate
 - PaCO₂
- Laboratory urine
 - Na, K, Cl, free water, Ca
 - Poisoning