•Disorders of electrolytes and water balance

• Water

• Osmolality

• Electrolytes (ionts)

Fluids

- Total body water volume: 60 % body weight, 40 L
- Body fluids/weight of adult
 - Male 55-60 %
 - Female 50-55 %
 - Newborn 75-80 %
 - Elderly decreases to 45-50% of body weight
 - Water content varies greatly from fat to muscle

• Loss of 20 % BF - fatal

•Compartments

• Intracellular (ICF)

- 2/3 of body fluid
 - ★Located primarily in skeletal muscle mass

• Extracellular (ECF)

- 1/3 of body fluid
- Comprised of 3 major components
 Intravascular (plasma X serum)
 Interstitial (fluid in and around tissues)

★Transcellular

•Transcellular component

- < 1 % of BF
- Physiologically located in
 - Body cavities (CSF, synovial fluid), gastrointestinal tract, bones, ...
- Potential to increase significantly in abnormal conditions
 - Hydrothorax, ascites, haematoma (massive bleeding into joint or cavity), ileus (bowel obstruction)

Assessment of transcellular-spacing

Signs/Symptoms

- Decreased urine output with adequate intake
- Tachycardia
- Decreased BP, CVP
- Increased weight (in case od water intake)

Reabsorption phase

- ▶ Increased BP, CVP
- Hyperhydration, risk of heart failure

•Water bilance (water exchanges)

Intake (mL)		Losses (mL)	
Beverages	1000-1500	Urine	1000-1500
Food	700	Insensible perspiration	400
Metabolic water	300	Respiratory	400
		Sweating	100
		Stool	100
		Drains,	??
	2,0 - 2,5 L		2,0 - 2,5 L

• Diuresis

Polyuria	> 3000 mL/24 hod
Normal amount of urine	500 - 3000 mL/24 hod
Oliguria	50 - 500 mL/24 hod
Anuria	< 50 mL/24 hod

•Serum osmolality: 275-295 mosm/kg < 240 or > 320 is critically abnormal

- The ratio of the amount of solute (particles) dissolved in a given weight of water
- The principal contribution to osmolality
 Na⁺ (Cl⁻, HCO₃⁻), urea, glucose
- Effective osmolality
 - Osmolality by solutes, generating gradient in the cell (semipermeabile) membrane
- Calculation (= osmolality)
 - (2 x Na) + K + glucose + urea)

Osmolal gap

• Osmolar gap

Difference between the measured osmolality and the calculated osmolality

 \star Measured osmolality is higher than calculated o.

Difference > 10 mmol/kg

•Absolute value x change of osmolality

- Osmotic difference between ICF and ECF
 Osmosis (transfer of water, not ions)
- Rapid changes of effective osmolality
 *Rapid transfer of the water to (from) the cells
- Optimal osmolality changes during treatment of hyper (hypo) osmolality
 - ▶ 1 4 mosm/hr.

•Hyperosmolality

Causes

Water deficit

★Vomiting, diarrhea, fever, burns, uncontrolled DM

- Excess of solutes, retention/supply Na⁺
 Acute catabolism, DM decomp, alkohol
- Sings, symptoms (volume deficit)
 - Acute weight loss, decreased skin turgor, oliguria, concentrated urine, rapid pulse, decreased BP, sensations of thirst
- Labs
 - Increased HCT, TP, osmolality (serum, urine), decreased urine volume

•Hyperosmolality

• Intervention = hydration

- 1. Isotonic solution
- ▶ 2. Hypotonic solution ?
- Osmolality changes during treatment should be gradual
 - ▶ 1 4 mosm/hod.
- Risk of rapid changes (rapid treatment of hyperosmolality)
 - Brain oedema !

Hypoosmolality

- Causes
 - Excess of water (water retention)
 - ★Hypersecretion ADH (brain injury)
 - Loss of Na+, chronic catabolism, protein malnutrition
- Sings, symptoms
 - Oedema, dyspnoea, mental status changes, cramps, cephalea,..
- Labs
 - Decreased HCT, TP, osmolality (serum, urine)

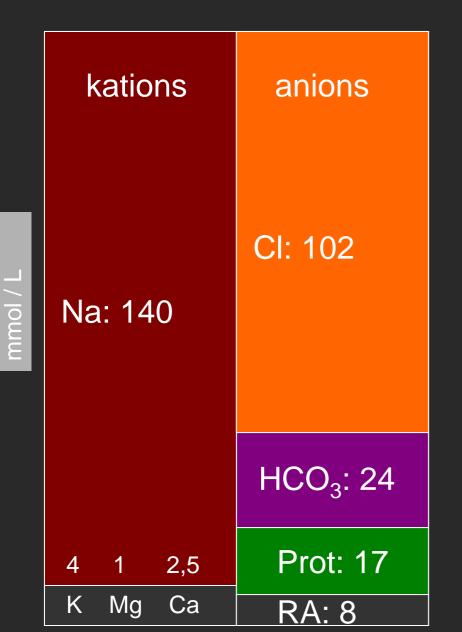
Hypoosmolality

• Intervention

- ▶ 1. Isotonic solution
- ▶ 2. Hypertonic solution ?

• Osmolality changes during treatment

▶ 1 - 4 mosm/hod.

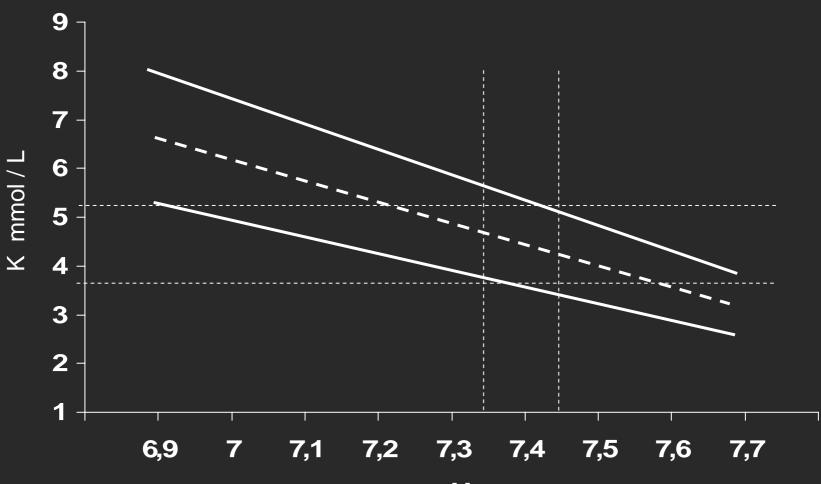

•Urine osmolality

- 50 1400 mosm/kg H₂O
 In elderly: max. 800 mosm/kg H₂0
- Depends on secretion of ADH

•lons in ECF and ICF

	ECF (blood) mmol/L	ICF (cells) mmol/L
Na	140	10
CI	102	8
K	4,0	155
Ca	2,2	0,001
Mg	1,0	15
Р	1,0	65

•Cations and anions in blood (el.charge)



•K⁺ - potassium

Physiological concentration

- ▶ 3,5 5,1 mmol/L
- Major cation in ICF
- Why examinate K⁺?
 - ABB
 - Neuromuscular excitation
 - \star Cardiac and neuromuscular function
 - ★Influences nerve impulse conduction
- Evaluation of the kalemia
 - Connection to pH !

•Relationship between K a pH

pН

•Hyperkalaemia - causes

- Shift K⁺ (from ICF to ECF)
 - Acidosis, hypoxemia, haemolysis, catabolism
- Excessive K intake
 - In renal failure
- Insufficient excretion by kidney
 - Renal failure, lack of of adrenal corticoids, drugs (spironolacton)
- Critical values
 - ▶ > 6,5 mmol/L
- MAC is accompanied by hyperkalaemia

• Hyperkalaemia - signs, symptoms

- Signs, symptoms
 - Cardiac arrhythmias (bradycardia)
 - ECG
 - ★Tall T, low P, a-v block, wide QRS complex
 - Muscle weakness, paralysis, paraesthaesia of tongue, face, hands, and feet, cramping
- Therapy
 - Acidosis causal treatment
 - 10 20% G + insulin
 - Diuretics, Ion exchanger (resonium)
 - Hemodialysis

• Hypokalaemia - causes

- Shift K⁺ (from ECF to ICF)
 - Alcalosis, anabolism
- Excessive K loss
 - Renal diuretics
 - Gastrointestinal diarrhea
 - Drugs large doses of adrenal corticoids
- MAL is accompanied by hypokalemia

• Hypokalaemia - signs, symptoms

- Signs, symptoms
 - Muscle weakness, paralytic ileus
 - Cardiovascular: ↓ BP, possible cardiac arrest
 - EKG changes: decrease T wave, U wave
 - Mental depression and confusion

• Therapy:

- Therapy of alkalosis
- Replacement of K
 - ★Oral, Parenteral (KCI 7,5 % = hypertonic solution !)

•Na+ (sodium): 135-145 mmol/L

Significance

- Major cation in ECF
- One of main factors in determining ECF volume
- Helps maintain acid-base balance
- Regulates voltage of action potential

Normal concentration of Na

- Physiological conditon
- Loss of isotonic fluid
- Excess of isotonic fluid

•Hypernatraemia

- Causes
 - Excess of Na gain or loss of water
 - Use of large doses of adrenal corticoids
- Critical value: > 155 mmol/l
- Risk
 - If hypovolemia present prerenal failure
 - If hyperhydration heart failure

•Hypernatraemia - symptoms

• Early

Generalized muscle weakness

- Moderate
 - Confusion, thirst
- Late
 - oedema, restlessness, thirst, hyperreflexia, muscle twitching, irritability, possible coma
- Severe
 - Brain damage, hypertension, tachycardia

•Hypernatraemia - therapy

- Therapy should be gradual
 - Changes osmolality
 - Fast therapy = risk of brain oedema !!
- When Na > 155 mmol/l start with isotonic saline
- Gradual lowering with hypotonic solution of NaCl
- Decrease of natraemia: no more than 2 mmol/L/hr !

•Hyponatraemia - causes, risks

- Excess Na loss or water gain
- Hepatic cirrhosis, congestive heart failure, deficit of suprarenal corticoids
- The major risks
 - Oedema (lungs)
 - Hyponatraemic encephalopathy !
 Intracerebral osmotic fluid shifts
 Intracerebral vasoconstriction

•Hyponatraemia - therapy

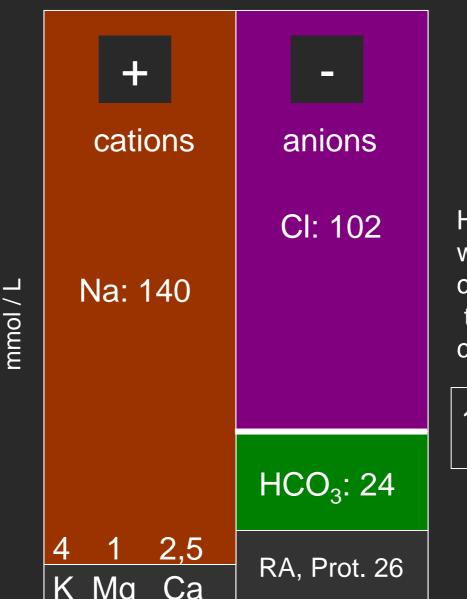
- Therapy
 - ▶ 0.9% solution NaCl (3% solution NaCl ?)
- Hyponatraemia must be corrected slowly (risk of the development of central pontine myelin**o**lysis).
- Rapid correction of hypoNa is the most common cause of that potentially devastating disorder.
- Serum sodium should not be allowed to rise by more than 8 mmol/l over 24 hours (i.e. 0.33 mmol/l/h

Chronic hyponatraemia

Chronic ill

- Hypoproteinaemia, katabolism
- Shift sensitivity of osmoreceptors
- Na+ levels drop gradually over months
- Chronic hypoNa is often called "asymptomatic hypoNa"

• Therapy?


- Try to increase albumin level
- Try to induce anabolism

•Chloride: 98 - 107 mmol/L

• Major anion in ECF

- Why examinate Cl⁻?
 ▶ ABB
 ★ Acidosis, alkalosis
 - Balance of fluid (hydration)

• The law of electroneutrality: the sum of positive and negative charges must be equal

HCO₃ is anion, which can adapt its concentration rapidly to the changing conditions

•Hyperchloraemia

• Causes

- Diarrhea, kidney diseases (CRF)
- Excessive intake CI
- Hyperchloraemia is accompanied by acidosis

• Therapy

- Correcting the underlying diseases
- Loop diuretics

•Hypochloraemia

- Causes
 - Heavy vomiting, (sweating)
 - Adrenal gland insufficiency
 - Loop diuretics
- Hypochloraemia is accompanied by alkalosis

- Therapy
 - ▶ NaCI, KCI, Arginin-CI, NH₄CI

Saline ("0,9 % solution NaCl, 300 mOsm/l)

• Saline acidify body fluids !

•Phosphorus - P: 0,9 – 1,5 mmol/L

- Intracellular mineral
- Inverse relationship to Ca
- Significance
 - Tissue oxygenation, normal CNS function
 - Movement of glucose into cells
 - Maintenance of acid-base balance
 - Enzymes, storage of energy (ATP ADP),....
 - Bone mass
- Supply P in bone: > 20 000 mmol

•Hypophosphataemia

Causes

- Malnutrition
- Hyperparathyroidism
- Disorders causing hypercalcemia
- Signs/Symptoms
 - Muscle fatigue, weakness, paresis
 - Disorientation, seizures, coma
 - ▶ Haemolysis
- Therapy
 - Supplementation of P

•Hyperphosphataemia

Causes

- Chronic renal failure (most common)
- Hypoparathyroidism
- Severe catabolic states
- Conditions causing hypocalcemia
- Signs/Symptoms
 - Muscle cramping and weakness
 - HR, diarrhea, nausea
 - Calcifications

•Hyperphosphataemia

• Treatment

- Treat cause (if possible)
- Restrict phosphate-containing foods
- Administer phosphate-binding agents
 ★CRF CaCO₃
- Diuretics