

Central European Institute of Technology BRNO | CZECH REPUBLIC

### Modern Genomic Technologies (LF:DSMGT01)

# Lecture 2 : DNA re-sequencing

Vojta Bystry vojtech.bystry@ceitec.muni.cz

### NGS data analysis





### **DNA re-sequencing**

- Variant Calling
- Medical purposes
- Cancer genomics
- Small variants (SNV + small indels) vs. Structural Variants
- Germline vs. Somatic



## Mapping

- Computationally most demanding
- More or less standardized
- Output .bam
  - .bam = binary (ziped) .sam
  - .sam = Sequence Alignment Map DNA re-sequencing
- Tools
  - BWA DNA
  - STAR RNA



### **Small Variant calling**

|   |   |   | Calling . | cargana. |  |
|---|---|---|-----------|----------|--|
|   |   |   |           |          |  |
|   | , |   | r<br>T    |          |  |
|   |   |   |           |          |  |
| 1 |   |   |           |          |  |
|   |   |   |           |          |  |
|   |   | 5 | İ         |          |  |





## Mapping QC

### **General Statistics**

| 🗯 Copy table | Configure C | Columns          | II Plot Sho | owing <sup>12</sup> / <sub>12</sub> row | vs and $^{16}/_{24}$ co | olumns. |       |            |          |           |                 |                  |        |                     |      |         |
|--------------|-------------|------------------|-------------|-----------------------------------------|-------------------------|---------|-------|------------|----------|-----------|-----------------|------------------|--------|---------------------|------|---------|
| K Reads      | s Mapped    | % GC             | Ins. size   | ≥ 100X                                  | ≥ 500X                  | ≥ 20X   | ≥ 30X | Median cov | Mean cov | % Aligned | Fold Enrichment | Target Bases 30X | % Dups | % Dups              | % GC | K Seqs  |
| 100 827.9    | 9           | <mark>48%</mark> | 176         | <mark>43.3</mark> %                     | 0.8%                    | 93.2%   | 88.7% | 89.0X      | 111.8X   | 99.6%     | 43              | 83%              |        |                     |      |         |
| squ          |             |                  |             |                                         |                         |         |       |            |          |           |                 |                  | 4.7%   |                     |      |         |
|              |             |                  |             |                                         |                         |         |       |            |          |           |                 |                  |        | <mark>26</mark> .8% | 47%  | 50 603. |
|              |             |                  |             |                                         |                         |         |       |            |          |           |                 |                  |        | 25.4%               | 47%  | 50 603. |
| 100 523.1    | 1           | <mark>48%</mark> | 178         | <mark>42.8</mark> %                     | 0.8%                    | 93.2%   | 88.8% | 88.0X      | 111.2X   | 99.6%     | 43              | 84%              |        |                     |      |         |
| ips          |             |                  |             |                                         |                         |         |       |            |          |           |                 |                  | 4.6%   |                     |      |         |
|              |             |                  |             |                                         |                         |         |       |            |          |           |                 |                  |        | <mark>26</mark> .7% | 47%  | 50 460. |
|              |             |                  |             |                                         |                         |         |       |            |          |           |                 |                  |        | 25.5%               | 47%  | 50 460. |
| 84 081.9     |             | 48%              | 172         | <mark>33.</mark> 7%                     | 0.5%                    | 92.1%   | 86.4% | 75.0X      | 94.4X    | 99.6%     | 44              | 80%              |        |                     |      |         |
| aps          |             |                  |             |                                         |                         |         |       |            |          |           |                 |                  | 4.5%   |                     |      |         |
|              |             |                  |             |                                         |                         |         |       |            |          |           |                 |                  |        | 24.4%               | 47%  | 42 202. |
|              |             |                  |             |                                         |                         |         |       |            |          |           |                 |                  |        | 23.3%               | 47%  | 42 202. |





#### Q<u>ua</u>limap Report: BAM QuQIIICap

Globals (inside of regions)

### Summary

#### Globals

| Reference size               | 3,101,804,739       |
|------------------------------|---------------------|
| Number of reads              | 84,405,388          |
| Mapped reads                 | 84,038,132 / 99.56% |
| Unmapped reads               | 367,256 / 0.44%     |
| Mapped paired reads          | 84,038,132 / 99.56% |
| Mapped reads, first in pair  | 42,129,277 / 49.91% |
| Mapped reads, second in pair | 41,908,855 / 49.65% |
| Mapped reads, both in pair   | 83,774,794 / 99.25% |
| Mapped reads, singletons     | 263,338 / 0.31%     |
| Secondary alignments         | n                   |

| 45,326,818 / 1.46%  |
|---------------------|
| 63,363,519 / 75.07% |
| 31,877,600 / 37.77% |
| 31,485,919 / 37.3%  |
| 63,167,455 / 74.84% |
| 196,064 / 0.23%     |
| 0 / 0%              |
| 2,065,102 / 2.45%   |
| 2,968,557 / 4.68%   |
|                     |

#### ACGT Content (inside of regions)

| Number/percentage of A's | 1,090,175,822 / 25.48% |
|--------------------------|------------------------|
| Number/percentage of C's | 1,048,730,118 / 24.52% |
| Number/percentage of T's | 1,108,474,060 / 25.91% |
| Number/percentage of G's | 1,030,171,088 / 24.08% |
| Number/percentage of N's | 237,846 / 0.01%        |
| GC Percentage            | 48.6%                  |

#### Coverage (inside of regions)

| Mean               | 94.3822 |
|--------------------|---------|
| Standard Deviation | 97.2737 |

| Secondary anymments      | v                 |
|--------------------------|-------------------|
| Supplementary alignments | 7,807 / 0.01%     |
| Read min/max/mean length | 30 / 80 / 80.02   |
| Clipped reads            | 2,065,102 / 2.45% |

| <u></u> |   |  |   |
|---------|---|--|---|
| or v    |   |  |   |
| r o     | ( |  | ( |
| $\sim$  |   |  |   |
|         |   |  |   |

## Mapping QC - coverage

#### Coverage histogram

Distribution of the number of locations in the reference genome with a given depth of coverage.



O Help

O Help

Y-Limits: O on

#### Coverage histogram Distribution of the number of locations in the reference genome with a given depth of coverage.





## Mapping QC – cumulative coverage

Y-Limits: O on









## Mapping QC

#### Coverage histogram

Distribution of the number of locations in the reference genome with a given depth of coverage.



O Help

O Help

Y-Limits: Oon

#### Cumulative genome coverage







#### Mark Duplicates

Number of reads, categorised by duplication state. Pair counts are doubled - see help text for details.





Help

## Variant Calling - Germline

- What you have from birth
- Family trio sequencing
- Predispositions

### Family Trio Sequencing





## Variant Calling - Germline

- What you have from birth
- Family trio sequencing
- Predispositions

### Family Trio Sequencing







### Variant Calling - Germline

Tools:



### Variant Calling - Somatic

- Diagnostics / prognostic / therapy decision
- Tumor normal paired
  - Somatic variant calling without normal needs high coverage
- Expected variant heterogeneity
- Indirectly corelates to the necessary coverage





### Variant Calling - Somatic

- Multiple tools:
  - strelka2, verdict, mutect2, somaticsniper, lofreq, muse, varscan
- Ensemble caller
  - SomaticSeq
  - Use machine learning to detect TP from FP
- Sensitivity vs. specificity
  - Preferred sensitivity
  - Preferred accuracy for derived information





### **Small Variant annotation**

- VEP variant effect predictor
- Transcript "selection"
  - Refseq vs. ensemble
- Population frequency
  - 1000 genome project
  - Gnomad
- Many clinical variant DBs
  - Gene based vs. variant based
  - snpDB
  - COSMIC
  - clinvar
  - CGC



### Small Variant annotation – functional prediction

### • General variant consequence

- Based on the position
- Impact

### • Effect of the variant on protein structure

- PolyPhen
- SIFT

### POLYPHEN-2

This mutation is predicted to be **PROBABLY DAMAGING** with a score of **0.976** 

(sensitivity: 0.76; specificity: 0.96)



| * SO term                         | SO description                                                                                                                                                       | SO accession        | Display term                      | IMPACT   |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------|----------|
| transcript_ablation               | A feature ablation whereby the deleted region includes a transcript feature                                                                                          | <u>SO:0001893</u> & | Transcript ablation               | HIGH     |
| splice_acceptor_variant           | A splice variant that changes the 2 base region at the 3' end of an intron                                                                                           | <u>SO:0001574</u> & | Splice acceptor variant           | HIGH     |
| splice_donor_variant              | A splice variant that changes the 2 base region at the 5' end of an intron                                                                                           | <u>SO:0001575</u> 굡 | Splice donor variant              | HIGH     |
| stop_gained                       | A sequence variant whereby at least one base of a codon is changed, resulting in a premature<br>stop codon, leading to a shortened transcript                        | <u>SO:0001587</u> 교 | Stop gained                       | HIGH     |
| frameshift_variant                | A sequence variant which causes a disruption of the translational reading frame, because the<br>number of nucleotides inserted or deleted is not a multiple of three | <u>SO:0001589</u> @ | Frameshift variant                | HIGH     |
| stop_lost                         | A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript                                           | <u>SO:0001578</u> 교 | Stop lost                         | HIGH     |
| start_lost                        | A codon variant that changes at least one base of the canonical start codo                                                                                           | <u>SO:0002012</u>   | Start lost                        | HIGH     |
| transcript_amplification          | A feature amplification of a region containing a transcript                                                                                                          | <u>SO:0001889</u> & | Transcript amplification          | HIGH     |
| inframe_insertion                 | An inframe non synonymous variant that inserts bases into in the coding sequenc                                                                                      | <u>SO:0001821</u> 🗗 | Inframe insertion                 | MODERATE |
| inframe_deletion                  | An inframe non synonymous variant that deletes bases from the coding sequenc                                                                                         | <u>SO:0001822</u> & | Inframe deletion                  | MODERATE |
| missense_variant                  | A sequence variant, that changes one or more bases, resulting in a different amino acid<br>sequence but where the length is preserved                                | <u>SO:0001583</u> @ | Missense variant                  | MODERATE |
| protein_altering_variant          | A sequence_variant which is predicted to change the protein encoded in the coding sequence                                                                           | <u>SO:0001818</u> & | Protein altering variant          | MODERATE |
| splice_region_variant             | A sequence variant in which a change has occurred within the region of the splice site, either<br>within 1-3 bases of the exon or 3-8 bases of the intron            | <u>SO:0001630</u> & | Splice region variant             | LOW      |
| incomplete_terminal_codon_variant | A sequence variant where at least one base of the final codon of an incompletely annotated transcript is changed                                                     | <u>SO:0001626</u> & | Incomplete terminal codon variant | LOW      |
| stop_retained_variant             | A sequence variant where at least one base in the terminator codon is changed, but the terminator remains                                                            | <u>SO:0001567</u> @ | Stop retained variant             | LOW      |
| synonymous_variant                | A sequence variant where there is no resulting change to the encoded amino acid                                                                                      | <u>SO:0001819</u> & | Synonymous variant                | LOW      |
|                                   |                                                                                                                                                                      |                     |                                   |          |



## **Small Variant interpretation**

- Hardest part
- Usually manual work
  - Clinical genetics
  - Select 5 probable causal from ~1000
- Bioinformatics can help





### Variant interpretation – gene networks

- Gene ontology
- Biological pathway DB
  - KEGG
  - Reactome
  - WikiPathways





## Variant interpretation – derived informations

- Tumor mutational burden
  - Several definitions
  - Mutations per million bases
- Mutational Signatures
  - COSMIC
  - exposure to ultraviolet light
  - Tabacco smoking
  - Defective DNA damage repair





