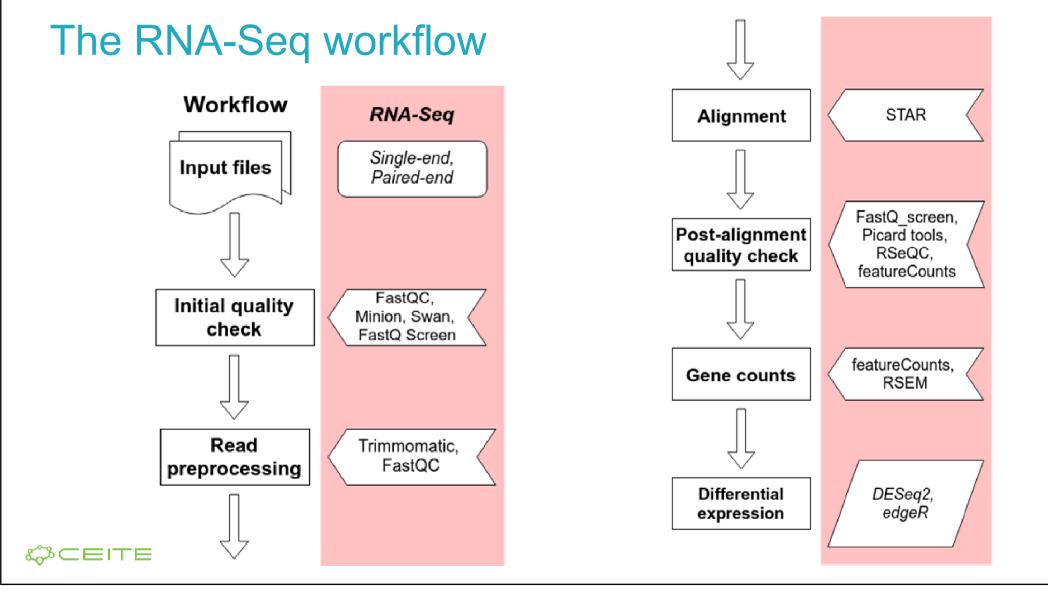

Central European Institute of Technology BRNO | CZECH REPUBLIC


Modern Genomic Technologies (LF:DSMGT01)

Lecture 5 : RNA-seq analysis

Vojta Bystry vojtech.bystry@ceitec.muni.cz

MANA

Alignment

- Mapping to genome or transcriptome?
- Genome
 - Requires spliced alignment
 - Can find novel genes/isoforms/exons
 - Information about whole genome/transcriptome
- Transcriptome
 - No spliced alignments necessary
 - Many reads will map to multiple transcripts (shared exons)
 - Cannot find anything new
 - Difficult to determine origin of reads (multiple copies of transcripts)

Alignment

- Our choice is the STAR aligner
- It performs genome alignment
- Offers a lot of settings to support splicing, soft-clipping, chimeric alignments, ...
- Other techniques (Salmon or Kallisto) do not use alignment per se and can give you the gene count information right away
 - They use only transcriptome as a reference and are very quick
 - Drawback is you see only what's in the transcriptome and nothing else

Duplication removal - UMI

- PCR duplicates
- Optical duplicates
- How the tools recognize duplicates
 - Maps to the exact same place
- Problem is it could be identical fragment not PCR duplicate
- UMI helps
 - Maps to the exact same place
 - AND have identical UMI sequence

Post-alignment QC

• Post-alignment QC gives us information about the mapping

- Number of mapped reads unique + multi mapped
- Mapped locations
- Duplication rates
- Library strand specificity
- Captured biotypes
- rRNA contamination
- 5' to 3' end coverage bias
- o ...

Post-alignment QC - Tools

- STAR alignment results number of mappings and others
- RSeQC mapped locations (Read Distribution), library strand specificity
- featureCounts biotypes summary of mappings to gene biotypes
- FastQ screen (not exactly Post QC) residual content of rRNA, tRNA, general mapping percentage to the genome (if selected)
- Qualimap general alignment statistics focused on RNA-Seq (rnaseq) including gene body coverage

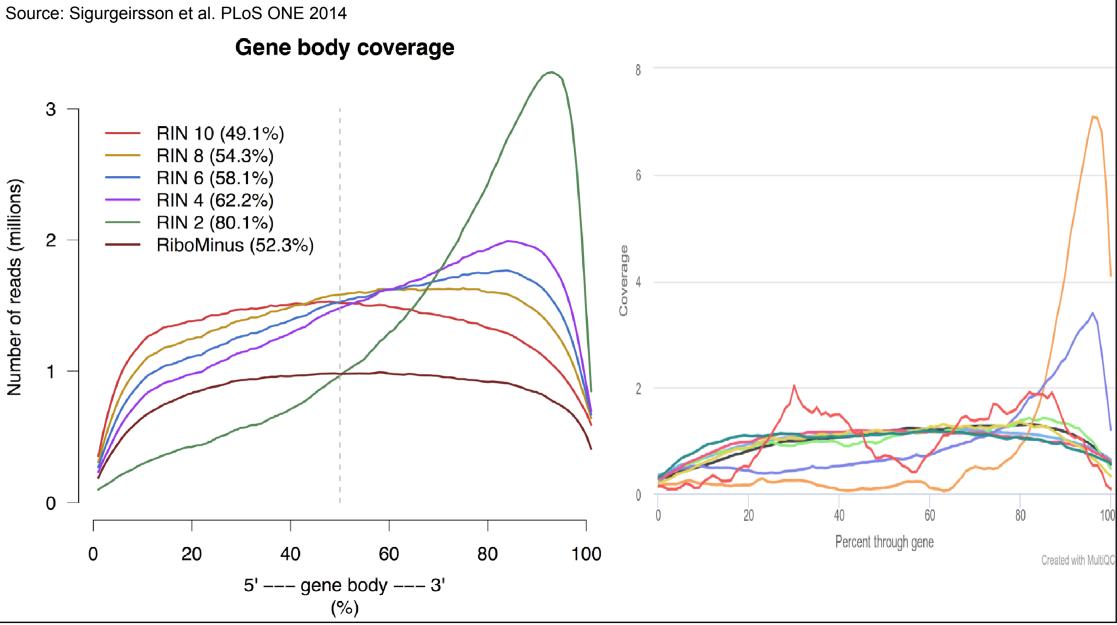
Post-alignment QC - RSeQC

- RSeQC is a general tool for many QC results
- Few of them are
 - Read distribution calculates assignment of reads to different genomic features
 - Infer experiment test strand specificity of the library
 - Inner distance calculates approximate distance between read pairs

Post-alignment QC - FastQ_screen

- FastQ screen is a quick scan of potential mapping locations on different references
- We can use it to do a quick scan of contaminations (various organisms) as well as estimate residual rRNA content
 - In **polyA** selection based libraries we expect to have less then 2% rRNA content
 - In **rRNA** libraries we can have up to 10-15% of rRNA and still consider it a good library
- Biobloom other option more computationally expensive

Post-alignment QC - Qualimap


- Qualimap performs a numerous checks of the alignment
 - One of the modules is rnaseq which is focused directly on RNA-Seq alignments
- One of the main information we can get from this module is the gene body coverage
 - We would like to see a nice and even read mapping coverage along the whole length of the genes
 - The coverage, however, depends on the library fragmentation (low RIN, FFPE samples but also depends on the used library kit (Lexogen QuantSeq)!

Note: Gene body coverage

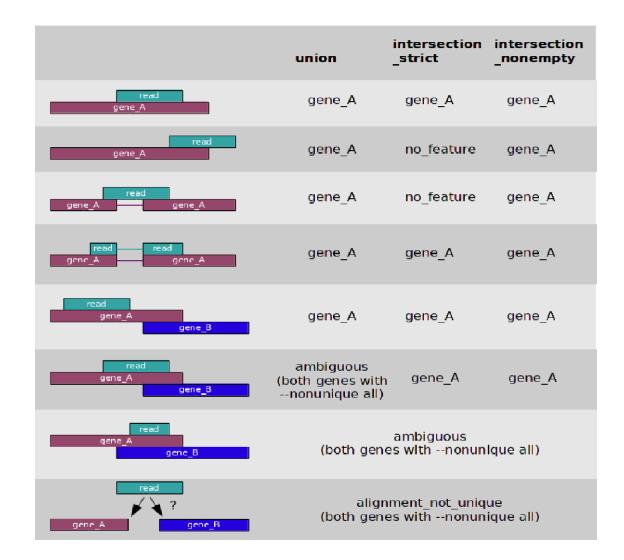
- Often, libraries with high fragmentation (and low RIN numbers) combined with polyA selection might have strong 3' end bias
 - This is a result of polyA "pulled" fragments
- Some kits, however, target only the polyA tail or sequences close to it
 - An example is Lexogen QuantSeq which sequences only one read per mRNA molecule close to polyA tail

Mapping QC

Mapping QC

• Examples

Feature counting


- Now, when we know our alignments are solid we need to get the number of reads mapped to a gene (or other feature)
 - From there, we can calculate the differential expression
- The question is, how do we summarize the counts
 - Do we want only uniquely mapped reads
 - Do we want also multi mapped? And how do we assign them? All? One random? Somehow else?
 - And what if we have multiple genes which overlap each other?

Strand specific library

- We can basically have three strand specificities
 - Non stranded/Unstranded not very common anymore
 - Direction of the read mapping is completely random (50/50)
 - Forward (sense) stranded common for target kits and "bacterial kits"
 - Direction of the read mapping is the **same** as the gene it originates from
 - Reverse (antisense) stranded "default" for Illumina and NEB kits
 - Direction of the read mapping is the **opposite** as the gene it originates from
- In case of paired-end sequencing it's measure by the first (R1) read orientation (FR, RF)

Feature counting

- The regular settings are summarize reads mapping to exons (-t exon) and sum them up to gene id (-g gene_id)
- Other possibilities:
 - Count per exons
 - Include introns
 - 0

Gene counts - Tools

- featureCounts is build around the "classic" read to gene assignment
 - By default, assigns only uniquely mapped reads an only reads uniquely assignable to a single gene (but both can be changed)
 - Gives you raw read counts per gene
- RSEM is efficient in counting also multi mapped reads and can estimate expression of individual gene isoforms
 - Tries to "weight" the probability a mapped position of a multi mapped read and assign it correctly to the real source
 - Gives you estimated counts per gene as well as per isoform and normalized TPM = Transcripts per million transcripts
- But, there is a **big differences** in the **minimal required** "good" aligned reads

Minimal number of reads and expression I

- RSEM is less precise in low read counts (<40-50M reads) and for low expressed RNAs (difficult to estimate)
- For lower read counts it's safer to go for featureCounts
- Our best practices for a minimal read count for each tools:
 - Less than 40-50M aligned reads (to the good stuff) -> featureCounts
 - More than 40-50M aligned reads (to the good stuff) -> RSEM
- But if you want isoforms!!! -> RSEM

Feature count results

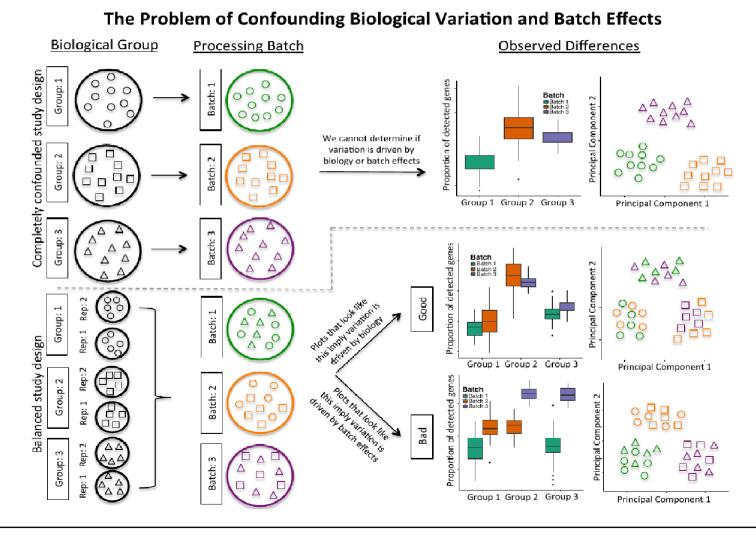
	AutoSa	ive (، ب ا	•					comp	lete.featur	ecounts				
ome	Insert	Dra	w Page	Layout	Formulas	Data	Review	View								
с <mark>ъ</mark>	X	alibi	i (Body)	× 12	✓ A [^]	∧ =		87 -	ab v	General			-		🔚 Insert 🗸	$\sum \cdot \mathbf{A}$
`		anu	r (Body)	• 12	•				ce .	General		L	🖬 🖌 📑	″` ⊑∕/`	Delete V	• 🗔 • Z
Paste		3	. U v	· · ·	≫ <u> </u>	Ξ	$\equiv \equiv $	<u>←</u> Ξ <u>→</u> Ξ	₩ .	116 - 1 6 - 16 - 16 - 16 - 16 - 16 - 16	9 500		ditional Formatting as T			Sc
1	1 ×	~	fx Geneic	4								101	natting to h			
	•	~	5		-	-	6								0	
A			С	D	E	F	G	н	1	J	K	L	М	N		P Q
Geneid					Strand	Length		KO1_rep2	KO1_rep3	KO2_rep1	KO2_rep2	KO2_rep3	NC_rep1	NC_rep2	NC_rep3	
			11869;12010 1					0		0 0				-	-	
			14404;15005 1				155	144								
ENSGO		1		17436		68		10								
	00002 1;1;1;1;1;		29554;30267 3			1021		0						-		
ENSGO		1	30366	30503		138		0		-	-			-	-	
	00002 1;1;1;1;1;		34554;35245 3			1219		0		0 0						
ENSGO		1		53312		840		0			-			-		
ENSG0	00002 1;1;1;1		57598;58700 5	7653;58856	+;+;+;+	1414		0		, .	-	0 0	0	0		
ENSG0	000011;1;1;1		65419;65520 6	5433;65573	+;+;+;+	2618	0	0	(0 0	0	0 0	0	0	0	
ENSG0	00002 1;1;1;1;1;	1;1;1;	89295;92091 9	1629;92240	->->->->->->->->->->->	3726	0	0		0 0	0	0 0	5	0	0	
ENSG0	00002 1;1		89551;90287 9	0050;91105	-;-	1319	0	0	() 0	0	0 0	0	0	0	
ENSGO	00002	1	131025	134836	+	3812	0	0	(0 0	0	0 0	0	0	0	
ENSG0	00002	1	135141	135895	-	755	0	1		L O	0	0 0	2	1	1	
ENSGO	00002	1	137682	137965	-	284	0	0) 1	0	0 0	2	0	1	
ENSGO	00002 1;1		139790;1400 1	39847;1403	-;-	323	0	0) 0	0	0 0	0	0	0	
ENSGO	00002 1:1:1:1:1:	1:1:1:	141474;1428 1	43011;1430		6195	1	5		2 4	13	3	7	1	5	
ENSGO		1		157887		104	0	0	(0 0	0) (0	0	0	
	00002 1;1		160446;1613 1			457	0	0	() 0	0) (0	0	0	
	00002 1:1:1:1:	1	182696;1831 1			570	0	0	() 0	0) (0	0	0	
			185217;1854 1				91	112						117		
ENSGO		1,1,1,1	187891	187958		68		0						0		
			257864;2579 2				-	6		7 6	-	-	-	-	-	
ENSGO		1,1,1,	347982	348366		385		0		-		-		0		
			347982 358857;3588 3			1095	0	0					-	-	-	
			365389;3653 3				4	1						1		
ENSGO		1;1;1; 1	439870	440232		6204 363		0					-	0		
ENSGO		1		440232		363		0								
	00002	1				2477	0	0						0		
			487101;4897 4				0	0		, .	-		-	-	-	
	00002 1;1		491225;4927 4			1239	0	0		0 0	-			•	-	
ENSG0		1		516479		104	-	-			-		-	-	-	
		1;1;1;	586071;5862 5	,			0	1		-			-	-		
	00002 1;1;1;1		587629;5876 5			635		0								
ENSGO		1		629433		372		6						-		
ENSGO		1	629640	630683		1044		1897								
ENSG0		1	631074	632616		1543		427							644	
ENSGO		1	632325	632413		89		2		-						
ENSG0	00002	1	632757	633438		682	18	15		9 21	20	17	31	17	15	

Differential expression

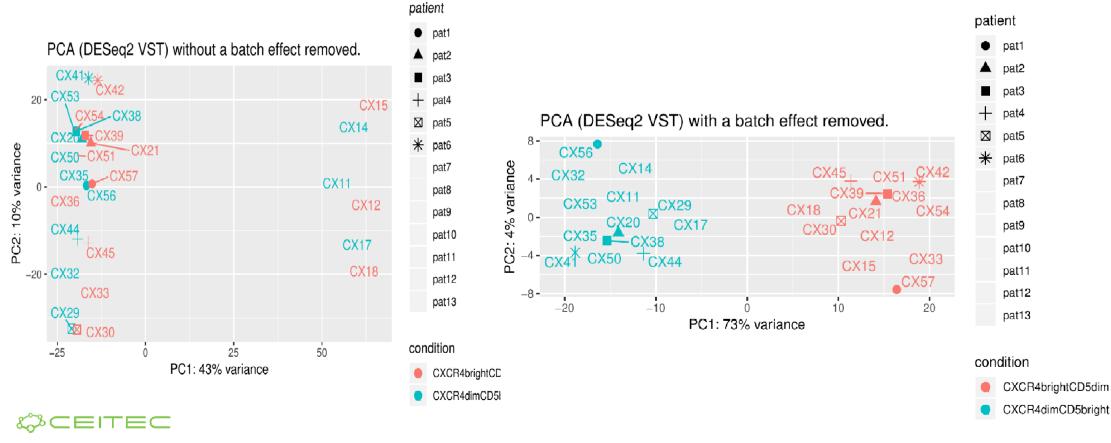
- We have our raw read counts but we need to find the real differences
- We want to figure out the change comparing the before and after treatment
- What are the changed genes? Are there even any? Is there even difference between the samples? And what about the experimental design paired samples does it affect the evaluation?
- The tools for the differential expression have to account for different libraries depths, model and "fix" outliers, account for different levels of expressions, and many other things
- Luckily, there are few tools that have all of this and can be used

Differential expression - tools

- DESeq2
 - \circ More specific
- edgeR
 - More sensitive
- The important part of the calculation is the design
 - Assignment of a group/condition to a sample
 - If the samples are paired (the same patient twice) we have to account for this as well!
 - Technically, the pairing of the samples is a **batch effect** so it is similar to have a technical noise in your data


Pairing of the samples/batch effect

• Paired samples are not the same as paired-end sequencing!


Pairing of the samples/batch effect

- There is a bad experimental design and a good experimental design
- Very simply more randomization gives you better results

Pairing of the samples/batch effect

 And example pairing of the patients AND different sequencing years - double batch

Differential expression results

Home Insert	t Draw Page Layout Formulas	Data Review View	B
Paste ♂	Calibri (Body) \checkmark 12 \land \land B I \sqcup \checkmark \checkmark \checkmark	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	l ↓ ∠ & Id ct

G1 \clubsuit \times \checkmark f_x KO1_rep1_normCounts

	С	D	E	F	G	н	I J		К	L	М	N		0
1	log2FoldChange	pvalue	padj	gene_name	KO1_rep1_normCounts	KO1_rep2_normCounts	KO1_rep3_n KO2_re	ep1_n KO2_	_rep2_n K	O2_rep3_r	NC_rep1_r	o NC_rep2	_noi NC	_rep3_noi K
2	-2.13814843577763	(0	D RASSF3	69.2462658512546	69.8847837776367	75.31983231 16.107	50934 16.19	9579735 1	7.0109318	7 39.311902	92 37.94880)318 39.	31509600
3	1.55863508011381	3.15044331526357e-309	2.19381120258379e-305	PLAU	83.1780779077663	83.5038967608087	82.09580228 237.81	56269 255.	7166174 24	48.077816	4 117.59612	99 109.3366	659 113	3.1547931
4	-1.62683585832331	2.67845548579999e-298	1.24342831835788e-294	SLC36A1	88.3586480206321	89.2083474848266	88.67070489 29.439	62332 29.1	5066689 2	8.5725640	1 46.873190	32 48.72098	3551 48.	18577103
5	1.30139182511156	1.76418769716443e-270	6.14246051460225e-267	RCN1	133.621557413121	128.297517206234	132.7245630 323.22	28858 328.	1552536 3	32.842399	0 193.51462	49 197.9954	4682 193	3.1395388
6	1.2630850795779	1.02089445414276e-249	2.84359941256924e-246	IGFBP3	2486.81813222656	2480.06783875938	2333.547543 5989.9	33215 5946	.039019 5	792.25338	3 3831.6257	95 4132.736	5918 417	79.558122
7	1.51267681217244	2.45760497122124e-212	5.70451073903304e-209	MEX3C	21.6717076434627	20.6286409946036	21.83591508 60.275	45782 62.8	2816940 6	2.1593125	7 50.619876	15 52.34453	3495 48.	96216158
3	1.45013017412421	6.53192478167081e-211	1.29957309191899e-207	LIPA	120.20573839574	112.804986826613	118.9313422 313.65	37312 319.3	2238990 34	40.239357	2 300.27819	19 323.4608	3678 326	5.6952326
9	-1.30650792865875	1.30934153213199e-192	2.27939993975028e-189	TMEM245	116.862103502177	111.752505143215	119.2731567 46.040	91467 46.8	3816362 4	9.4995325	8 90.927876	81 90.80536	i143 94.	10844619
0	1.09960201635484	2.17678313377643e-176	3.3684509671227e-173	SETD7	94.0345714510628	90.8291692772598	95.78848936 202.87	62937 203.	5484518 2	02.100644	9 129.48138	71 136.1588	3091 133	3.5887316
1	1.27833505522101	2.86957786645544e-168	3.99646109461249e-165	RCN1P2	23.0752087098965	23.0493488664193	23.66562803 55.763	31196 57.9	7148811 5	7.6216827	5 34.433287	34 32.74979	745 34.	98713165
2	1.06309728758472	3.66004260013096e-168	4.63394666291126e-165	ARPC5	129.493613100081	127.181886621832	134.8156635 281.11	52001 275.4	4931882 2	70.911003	9 239.51622	97 237.3424	1888 231	1.0670432
.3	1.34234143977455	4.21847608866044e-166	4.89589304056449e-163	NRBF2	16.9658511265965	16.7765580333664	18.03574201 44.014	70578 44.6	5677287 4	4.2159910	1 39.221348	58 39.83935	5072 41.	.04958553
4	1.37893895771298	4.59426664975081e-166	4.92187320239074e-163	TRIB2	24.6231878272866	26.3751909859575	25.09320628 65.860	30250 70.4	5303702 6	3.8997733	2 34.376691	38 32.94672	2949 33.	31871791
.5	1.41514290463119	4.28394899861381e-164	4.26161126454961e-161	COMMD8	12.8998259782516	13.050772874137	14.05460832 35.995	00503 35.9	9294735 3	5.9902419	8 42.141726	05 40.68615	5847 42.	42065821
6	1.2038640396391	6.1921617091496e-162	5.74921574155509e-159	SSX2IP	39.0503532013632	36.5842633149195	39.59016279 86.428	87680 89.2	1064996 93	3.0732106	9 63.954002	74 63.56966	5096 65.	01857894
7	1.13805745295508	2.10942495605565e-156	1.83612258518669e-153	TNC	411.20517274353	391.902079630133	372.8794154 911.45	34624 860.	5998087 8	46.444079	1 1511.5670	03 1468.305	5561 155	54.251289
8	1.21100372780037	1.43597859663817e-152	1.17640434796351e-149	RAB12	30.8563837399778	30.4167206502063	31.88928298 72.126	22579 74.2	2902293 7	1.8976048	8 62.810754	19 66.24793	3664 63.	00326729
9	1.58668299514642	3.58088420001444e-139	2.77060968075562e-136	STC1	8.97827888086311	8.52510163552496	9.068137847 26.068	28415 26.5	8827214 2	8.1788883	6 26.430548	03 28.92931	1597 25.	68696398
0	1.03153278282341	1.73185526160641e-136	1.2694499067575e-133	SLIT2	243.54871446939	224.53644233616	226.3214181 468.00	31733 476.	5927203 4	91.845920	6 450.55311	94 423.0100	0116 449	9.0015229
1	1.12237005015307	4.03327349281685e-133	2.80856999672302e-130	AAGAB	25.9441300074596	26.2278435502817	27.02345291 59.185	73202 57.12	2774263 5	8.0775177	1 61.044944	56 58.70543	3969 60.	80624722
2	1.13483447420888	3.87033602143435e-132	2.5667699890722e-129	COL8A1	130.112804747037	121.056443224454	120.9621225 272.19	30702 274.3	2378596 2	80.462818	3 247.42841	52 228.8547	/181 255	5.9610977
3	0.76861333414839	4.98427559255326e-128	3.15527300806769e-125	LAMB1	347.077557840446	335.320664330648	346.4792713 589.21	81406 592.	5768548 5	91.694496	4 601.93733	76 607.3974	1761 60f	5.7079185
4	1.10360750428471	6.96602473945468e-125	4.21807941506023e-122	CRABP2	165.613125839185	176.564327206873	165.4784356 383.46	42897 362.	5841849 3	57.416047	3 297.88982	12 286.4770	316 269	9.2423318
5	-1.06633428046114	3.25703843213295e-122	1.89003226017982e-119	PURA	70.6704066392535	69.190145866594	72.80649034 35.365	00731 33.5	5460671 3	3.7317869	5 48.208866	84 47.79540)494 49.	45773001
6	-0.975583321313511	8.4072307615726e-120	4.68350011265686e-117	NORAD	566.539717243245	564.256480103413	606.9821404 297.52	91949 285.3	2682883 3	11.231678	0 430.14443	50 447.1538	3791 455	5.2952420
7	-1.14400632988284	2.60007128477474e-113	1.39273818396376e-110	LBR	52.5280913834405	49.6771354563924	52.80028821 23.037	48430 22.6	1649465 2	5.3609995	3 48.401294	31 48.34681	1464 47.	83887312
8	1.5627724122809	3.95934828245093e-112	2.04229050109978e-109	MMP1	16.9039319619009	15.5135800132886	14.43663630 43.435	78895 44.5	9503540 5	2.1102237	1 59.788503	09 61.14739	9693 62.	25991464
9	0.92906087783015	6.814564670465e-110	3.38951579162736e-107	BAG2	63.9418574089975	66.0116511827316	68.34279499 128.89	41287 127.0	0968798 1	25.955487	0 140.44978	15 145.7493	3992 13f	5.9751160
0	2.15548627650218	5.92161998592462e-109	2.84380694979215e-106	PODXL	2.84828157599795	3.53633845621776	2.613875654 12.906	43983 13.84	4977334 1	3.7993673	9 4.3805662	05 4.312811	1571 3.7	33282225
1	0.707296411581976	2.57566499539123e-108	1.19570954636045e-105	ATP2B4	503.051933708682	481.573519055654	492.0319318 809.92	16672 819.3	3180178 8	10.225919	6 663.31054	17 674.8073	3118 676	3.4509165
2	-0.714859731286293	2.74218583659034e-106	1.23194910149012e-103	HEG1	608.33515341278	593.725967238561	602.5988720 369.53	62319 370.	7129523 3	72.209963	7 654.53809	00 635.9526	5213 667	7.7619500
3	1.03324954224488	6.63741332358964e-103	2.88872672992603e-100	ETV1	24.9947028154603	23.7018875101262	24.14818969 49.429	28080 51.7	1542407 4	9.7481698	3 31.263885	94 30.40630	0623 29.	46980305
4	1.14880944369458	1.50032203076728e-102	6.33181361287754e-100	SLC17A5	28.0906610502407	30.5219688185462	26.82238556 66.285	97663 61.12	20099286	4.1069710	3 77.786178	20 80.50581	1599 76.	36709615
5	-1.09315016648007	1.98504091126693e-102	8.13107787388662e-100	MAP3K3	57.9356984335236	62.4753127265138	57.06291620 29.371	51546 27.6	7896752 2	6.9978614	2 42.413389	07 43.87645	5744 42.	81711296
6	1.12619224808891	2.10079261022215e-102	8.35935390930398e-100	CPED1	19.2981396634644	18.3763301921316	18.86011818 41.409	58006 41.0	5542022 4	2.4133709	4 47.552347	87 45.47160	0692 43.	24660560
7	1.42012206861522	1.6056868181501e-101	6.21177786566014e-99	NCEH1	10.2785813394709	10.0617248932863	9.651233185 24.706	12692 27.0	5159278 2	9.5671130	1 35.791602	95 33.99046	6927 36 .	90332961
	edgeR	+												

Count normalisation

- Normalize to:
 - Gene size
 - Library size
- rpkm Reads Per Kilobase of transcript per Million mapped reads
- fpkm Fragments Per Kilobase of transcript per Million mapped reads
- tpm Transcripts Per Million (TPM)
 - for every 1,000,000 RNA molecules in the RNA-seq sample, x came from this gene/transcript
- Never ever use normalized counts for any comparisons
 - ... except comparing a single gene in a single experiment for the samples
 - If you really, really need to use any kind of normalized counts to compare use TPM

\$CEITEC

log2(fold-change)

Fold-change is usually calculated by average expression of all samples of condition 1
vs average expression of all samples of condition 2

• Example:

- a) geneA expression in **pre is 5**, in **post is 10**; fold-change of post/pre is **2** = gene is **up-regulated 2x**
- b) geneB expression in pre is 10, in post is 5; fold-change of post/pre is 0.5 = gene is down-regulated 1/2x ... (O_0)
- Solution: Adding log2 gives us log2(2) = 1, log2(0.5) = -1
- Nice and even distribution around 0 and clear interpretations

log2(fold-change)

- But it might be **misleading**
- Large log2FC on low-expressed genes are most likely not biologically relevant
- Small log2FC on highly-expressed genes might be biologically relevant
- Example: "Common" cut-off value of fold-change of 2x (log2FC=+/-1) or 1.5x (log2FC=+/-0.58)
 - geneA expression in WT is **10** and in KO is **4**, **log2FC = -1.32 YES (?)**
 - geneB expression in WT is **1,000,000** and in KO is **500,001**, log2FC = **-0.99 NO (?)**

P-value and adjusted p-value

- P-value tries to give you "a number" saying if the differences you are observing are robust and the differences are not "random" between the compared conditions/samples
- Adjusted p-value adds a correction for the multiple testing we are doing tries to add correction of getting a p-value just by accident
- But **is** adjusted p-value **0.049** really **better** than **0.051**?
- Number of replicates highly influences the estimates
 - The observations might be the same but the statistical significance might be lower

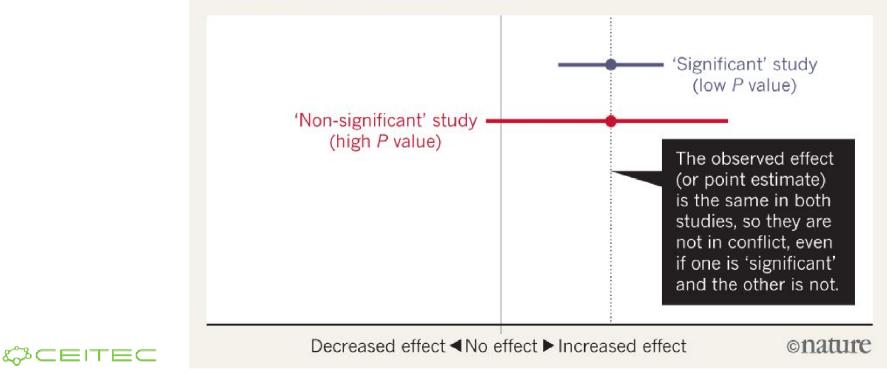
How many differentially expressed genes I have?

It depends **how many you want**...:)

Selection of the differentially expressed (DE) gene is completely up to you

Some people use **p-value, some adjusted p-value and some people log2fc and their combinations**, some just take top *n* genes

Statistical significance ≠ biological relevance!!!


Scientists rise up against statistical significance, Nature 567, 305-307 (2019), doi: <u>10.1038/d41586-019-00857-9</u>

P-value significance

BEWARE FALSE CONCLUSIONS

Studies currently dubbed 'statistically significant' and 'statistically non-significant' need not be contradictory, and such designations might cause genuine effects to be dismissed.

Differential expression output

• Example

