(XXVI.) Recruitment and Summation in Skeletal Muscle

Contraction of the skeletal muscle

- Myography method of recording of the muscle contraction
- Motor unit: a group of muscle fibers innervated by a single α motoneuron
- Muscle twitch elementary mechanical response to a single stimulus (action potential)
- Types of muscle fibers:
 - **S** (slow) slowly get tired, used in long-term performance, many mitochondria, well vascularized, a lot of myoglobin
 - **F** (fast) fast contraction, quickly get tired, a lot of glycogen, a little myoglobin

Morphology of the skeletal muscle fiber

Motor end-plate

Excitation – contraction coupling

Excitation

- Action potential (AP) spreads on axon from alfa-motoneuron to neuro-moto end-plate
- Release of acetylcholine from vesicles to synaptic cleft
- Binding of acetylcholine with the nicotinic receptors placed on post-synaptic membrane
- Opening of Na⁺ channels (connected with acetylcholine receptors) and intake of Na⁺
- Local depolarization of the membrane
- Opening of voltage gaited channels for Na ⁺
- Formation of action potential

Excitation – contraction coupling

Contraction

- Spreading of action potential (AP) across fiber and into transversal tubule (T-tubule)
- Dihydropyridine receptors (DHPR) in the membrane changes its conformation
- Interaction of DHPR with ryanodine receptors (RYR1) in the membrane of sarcoplasmic reticules
- Opening of calcium channels in the sarcoplasmic reticulum and intake of Ca²⁺ into cytoplasm
- Binding of Ca²⁺ with troponin C
- Binding of myosin heads on actin
- If enough of Ca^{2+} and ATP in cytoplasm, myosin shifts along actin \rightarrow contraction of muscle
- Contraction ends with decrease od Ca²⁺ concentration in the cytoplasm (Ca²⁺ is pumped by Ca-ATPase into the reticulum)

Rigor mortis – caused by ATP deficit → formation of strong link between actin and myosin

Recruitment of skeletal muscle

Increasing of the number of simultaneously activated motor units

Dependence of contraction formation on the stimulus duration and strength

Summation of skeletal muscle

Summation is due to repetitive activation prior to full relaxation (higher frequency of stimulation, higher force of contraction)

Principle: The higher the frequency of the stimulus, the higher concentration of calcium in the cytoplasm

→ increase of the contraction force summation superposition (mN) t (s) (mN) Smooth tetanic Incomplete tetanic contraction contraction

If the next stimulus arrives before the contraction is completed, both mechanical responses fuse

Superposition – if the fused contraction if double peaked

Summation – if the new contraction occurs during crescent, resulting double contraction has a single peak

Series of stimuli

Incomplete tetanic contraction

cumulative superposition

Smooth tetanic contraction

– exerted by a train of stimuli during ascending phase

t (s)

Autoregulation of the cardiac muscle

Heterometric autoregulation (Frank-Starling):

Increase of the heart filling leads to stronger contraction of the heart

Principles: 1) the relative position of actin and myosin during different stretch of muscle

2) Fiber stretching increases sensitivity of troponin to calcium

Low heart filling

High heart filling

Extremal muscle stretch

Homeometric autoregulation:

Increasing heart rate leads to muscle contraction increase

Principle: Increase of ratio Intracellular/Extracellular calcium concentration

Homeometric autoregulation is analogous to the summation of the skeletal muscle. Cardiac muscle can not get into tetanic contraction because of long refractory phase.

Skeletal, cardiac and smooth muscle – action potential and contraction

