EVALUATION OF MUSCLE CONTRACTION ### **EVALUATION OF CONTRACTION IN SKELETAL MUSCLE** # Relationship between load and contraction velocity of skeletal muscle # Physiological factors affecting relationship between load and contraction velocity of skeletal muscle ### 1) Initial length of muscle (sarcomeres) ### 2) Number of active sarcomeres #### 3) Type of muscle fibers #### slow twitch muscle fibers aerobic metabolisms, slow rate of contraction, can be active long time before they fatigue #### fast twitch muscle fibers anaerobic metabolisms, high rate of contraction, fatigue quickly Note: Depending on the intensity of muscle contraction only certain types of muscle fibbers are activated. # Exploration of dependence of contraction velocity on skeletal muscle load ## Setup for measurement of contraction velocity of skeletal muscle ### Representative results of measurement # EVALUATION OF CARDIAC MUSCLE CONTRACTILITY ## Index (dP/dt)_{max} Index (dP/dt)_{max} represents maximum velocity of left ventricle pressure rise Normal values: 1300-1900 mmHg/s Assessment: by means of cardiac catheterization. Use: mainly for research purposes (difficult and expensive invasive method). **Note.:** this index may be affected by the Frank-Starling mechanism (e.g. at hypertension when end-diastolic volume is increased)! ## Index [(dP/dt)/P]_{max} Index [(dP/dt)/P]_{max} represents maximum velocity of cardiac muscle contraction **Assessment:** by means of cardiac catheterization. Use: mainly for research purposes (difficult and expensive invasive method). **Note.:** this index may be affected by high end-diastolic pressure in left ventricle! Index V_{max} represents velocity of cardiac muscle contraction at zero pressure **Assessment:** by means of cardiac catheterization. **Use:** mainly for research purposes (difficult and expensive invasive method). **Note:** this index may be affected by inaccurate extrapolation! ### **Index E**_{max} Index E_{max} represents slope of the line determined from end-systolic values of P-V diagrams **Assessment:** by means of cardiac catheterization. **Use:** mainly for research purposes (difficult and expensive invasive method). **Note.:** index E_{max} is the most exact method for evaluation of cardiac muscle contractility independent on preload and afterload of left ventricle! 5 ### **Ejection fraction (EF)** SV - stroke volume EDV - end-diastolic volume Normal values: SV \approx 70 ml, EDV \approx 100 ml, EF = 50 - 70% EF increases under sympathetic stimulation and with increasing inotropic state EF lower than 40 % indicates decreased contractility of cardiac muscle (systolic dysfunction) **Assessment:** by means of magnetic resonance or echocardiography. Use.: <u>assessment of EF is a non-invasive method commonly used in clinical practice to estimate left ventricular contractility and systolic performance!</u> # Velocity of circumferential fiber shortening (V_{cf}) $$V_{cf} = \frac{(C_d - C_s)}{C_d \cdot t_{ef}}$$ C_d – length of inner circumferential left ventricle fiber in diastole C_s – length of inner circumferential left ventricle fiber in systole t_{ef} – duration of ejection fraction Normal value: 1.09 ± 0.12 circ \cdot s⁻¹ **Assessment:** by means of echocardiography Use.: <u>assessment of V_{cf} is a non-invasive method commonly used in clinical practice to estimate left ventricular contractility!</u>