EVALUATION OF MUSCLE CONTRACTION

EVALUATION OF CONTRACTION IN SKELETAL MUSCLE

Relationship between load and contraction velocity of skeletal muscle

Physiological factors affecting relationship between load and contraction velocity of skeletal muscle

1) Initial length of muscle (sarcomeres)

2) Number of active sarcomeres

3) Type of muscle fibers

slow twitch muscle fibers

aerobic metabolisms, slow rate of contraction, can be active long time before they fatigue

fast twitch muscle fibers

anaerobic metabolisms, high rate of contraction, fatigue quickly

Note: Depending on the intensity of muscle contraction only certain types of muscle fibbers are activated.

Exploration of dependence of contraction velocity on skeletal muscle load

Setup for measurement of contraction velocity of skeletal muscle

Representative results of measurement

EVALUATION OF CARDIAC MUSCLE CONTRACTILITY

Index (dP/dt)_{max}

Index (dP/dt)_{max} represents maximum velocity of left ventricle pressure rise

Normal values: 1300-1900 mmHg/s

Assessment: by means of cardiac catheterization.

Use: mainly for research purposes (difficult and expensive invasive method).

Note.: this index may be affected by the Frank-Starling mechanism (e.g. at hypertension when end-diastolic volume is increased)!

Index [(dP/dt)/P]_{max}

Index [(dP/dt)/P]_{max} represents maximum velocity of cardiac muscle contraction

Assessment: by means of cardiac catheterization.

Use: mainly for research purposes (difficult and expensive invasive method).

Note.: this index may be affected by high end-diastolic pressure in left ventricle!

Index V_{max} represents velocity of cardiac muscle contraction at zero pressure

Assessment: by means of cardiac catheterization.

Use: mainly for research purposes (difficult and expensive invasive method).

Note: this index may be affected by inaccurate extrapolation!

Index E_{max}

Index E_{max} represents slope of the line determined from end-systolic values of P-V diagrams

Assessment: by means of cardiac catheterization.

Use: mainly for research purposes (difficult and expensive invasive method).

Note.: index E_{max} is the most exact method for evaluation of cardiac muscle contractility independent on preload and afterload of left ventricle!

5

Ejection fraction (EF)

SV - stroke volume

EDV - end-diastolic volume

Normal values: SV \approx 70 ml, EDV \approx 100 ml, EF = 50 - 70%

EF increases under sympathetic stimulation and with increasing inotropic state EF lower than 40 % indicates decreased contractility of cardiac muscle (systolic dysfunction)

Assessment: by means of magnetic resonance or echocardiography.

Use.: <u>assessment of EF is a non-invasive method commonly used in clinical practice to estimate left ventricular contractility and systolic performance!</u>

Velocity of circumferential fiber shortening (V_{cf})

$$V_{cf} = \frac{(C_d - C_s)}{C_d \cdot t_{ef}}$$

C_d – length of inner circumferential left ventricle fiber in diastole

C_s – length of inner circumferential left ventricle fiber in systole

t_{ef} – duration of ejection fraction

Normal value: 1.09 ± 0.12 circ \cdot s⁻¹

Assessment: by means of echocardiography

Use.: <u>assessment of V_{cf} is a non-invasive method commonly used in clinical practice to estimate left ventricular contractility!</u>