MUNI MED

Receptors: key structures in cell signaling

Tibor Stračina stracina@med.muni.cz

1 aVLFZ041 Selected lectures from Physiology

The presentation is copyrighted work created by employees of Masaryk University. Any unauthorised reproduction or distribution of the presentation or

individual slides is against the law.

Signal transduction in multicellular organism

– Humoral signaling

- Neuronal signaling

Signal transduction in multicellular organism

- Neuronal signaling

4 aVLFZ041 Selected lectures from Physiology

Signal transduction in multicellular organism

– Humoral signaling

- Neuronal signaling

Cellular signaling

https://www.cellsignal.com/contents/science-cst-pathways-cellular-metabolism/insulin-receptor-signaling/pathways-irs

https://www.cellsignal.com/contents/science-cst-pathways-cellular-metabolism/insulin-receptor-signaling/pathways-irs

Protein-based structures

Receive and transduce signals

- Integrated in signaling pathways

Classification

- Location:
 - Intracellular
 - Cell surface

– Function

– Ionotropic = ligand-gated ion channels

MUNI

MED

- G protein-coupled
- Enzyme-linked
 Tyrosine kinases
 Histidine kinases

Intracellular vs. cell-surface receptors

Ionotropic receptors

- Ligand-gated ion channels

 Direct change of membrane voltage and/or intracellular concentration of the ion

 $M \vdash D$

Metabotropic receptors

Production of second messenger

- G protein-coupled receptors

- Enzyme-linked receptors
 - Receptor Tyrosine kinases
 - Receptor Histidine kinases

G protein-coupled receptors

Production of second messenger:
 cAMP, cGMP, DAG, IP3, Ca2+

– Gs – Gi

– Gq

MUNT

MED

https://www.khanacademy.org/science/biology/cell-signaling/mechanisms-of-cell-signaling/a/signal-perception

Enzyme-linked receptors

Receptor tyrosine kinases

- Tyrosine kinase activity -

phosphorilation of enzymes/other

proteins

https://ars.els-cdn.com/content/image/3-s2.0-B9780124059269000046-f04-04-9780124059269.jpg?_

MUNI Med

Regulation of receptor response

Down-regulation

 Decrease of number and/or sensitivity of the receptors due to increased ligand stimulation

– Desensitisation

- Internalisation

Regulation of receptor response

Up-regulation

 Increase of number and/or sensitivity of the receptors due to decreased ligand stimulation

- (Re)sensitisation
- Externalisation
- Synthesis de novo

Receptor families

- Classification according to ligand(s)

Adrenergic receptors

- G protein-coupled receptors
- Subtypes:
 - Alpha:
 - α 1 (Gq) DAG+IP3; smooth muscle contraction, mydriasis
 - $\alpha 2$ (Gi) cAMP; platelet activation
 - Beta (Gs) cAMP
 - $\beta 1$ heart (SA node)
 - β2 smooth muscle relaxation (bronchodilation)
 - β 3 lipolysis, urination

Acetylcholine (cholinergic) receptors

– M type = Muscarinic acetylcholine receptors

- Metabotropic receptors G-protein coupled receptors
- Subtypes
 - M1 CNS, autonomic ganglia, salivary glands, stomach
 - M2 heart (SA node, atria, AV node), CNS
 - $\underline{M3}$ smooth muscle (e.g. vessels, bronchi), endocrine+exocrine glands, GIT, eyes, CNS M4+ $\underline{M5}$ CNS

– N type = Nicotinic acetylcholine receptors

- Ionotropic receptors ligand-gated ion channels
- Subtypes (according to subunits)
 - Nm "muscular" type neuromuscular junction
 - Nn "neuronal" type autonomic ganglia, adrenal medulla

Insulin receptors

https://www.cellsignal.com/contents/science-cst-pathways-cellular-metabolism/insulin-receptor-signaling/pathways-irs

IP3 receptors

Inositol-tris-phosphate receptors

MED

Take home messege

Receptors are

- crucial structures in cell signalling.
- important in pathophysiology of many diseases.
- targets of pharmacotherapy.

The presentation is copyrighted work created by employees of Masaryk University. Any unauthorised reproduction or distribution of the presentation or

individual slides is against the law.